A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Quantification of HER2 Amplification Levels Using Deep Learning. | LitMetric

AI Article Synopsis

  • HER2 assessment is crucial for selecting patients for anti-HER2 treatments, but manually analyzing HER2 amplification is time-consuming and prone to errors due to subjective interpretations and complex cell imagery.
  • To overcome these challenges, a new deep learning model has been developed that can accurately quantify HER2 amplification status in breast cancer by analyzing FISH and DISH datasets, achieving high accuracy and outperforming existing methods.
  • The model was also successfully applied to assess HER2 amplification in gastric cancer patients, yielding promising results with high accuracy and precision, indicating its potential beyond breast cancer applications.

Article Abstract

HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p ≤ 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 ±1.46%, precision 96.15 ±5.82%, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3476554DOI Listing

Publication Analysis

Top Keywords

her2 amplification
12
deep learning
12
her2
10
patient selection
8
assessment her2
8
situ hybridization
8
cen17 her2
8
her2 cells
8
data set
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!