AI Article Synopsis

  • Environmental catalysis focuses on reducing water pollution and enhancing sustainability through improved catalytic processes, where the specific reaction microenvironment is key to effectiveness.
  • The review categorizes microenvironment engineering into four scales: atom/molecule-level, nano/microscale structures, interface/surface adjustments, and external effects, each offering unique advantages for increasing catalytic efficiency.
  • Recent advancements in material design for liquid-phase environmental catalysis, particularly for applications like water purification and green synthesis, highlight the importance of microenvironment engineering, while also addressing challenges and future directions in this research area.

Article Abstract

Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.4c00276DOI Listing

Publication Analysis

Top Keywords

microenvironment engineering
24
environmental catalysis
16
liquid-phase environmental
12
system design
8
microenvironment
7
environmental
5
engineering
5
engineering heterogeneous
4
heterogeneous catalysts
4
catalysts liquid-phase
4

Similar Publications

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair.

Carbohydr Polym

March 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.

View Article and Find Full Text PDF

Glutathione depletion-based pH-responsive injectable hydrogels for synergistic treatment of colon tumor.

Int J Biol Macromol

January 2025

Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China. Electronic address:

In this paper, a pH-sensitive chitosan-grafted phenylboronic acid (CS-BA)/polyvinyl alcohol (PVA) hydrogel was constructed based on dynamic borate bonding for loading chemotherapeutic drug cisplatin (CDDP) and divalent Cu (CS-BA/PVA-Cu-CDDP). The hydrogel can respond and degrade specifically in the simulative acidic tumor microenvironment (TME), and the released Cu can deplete glutathione (GSH) in tumor cells and generate Cu. It is worth noting that, Cu can further catalyze the Fenton-like reaction to generate cancer cell-toxic hydroxyl radicals (OH•).

View Article and Find Full Text PDF

Gliomas are aggressive tumors with a poor prognosis. The protocols presented here outline the methods used to study tumor progression, the tumor microenvironment (TME), and the effects of experimental treatments. The Sleeping Beauty (SB) transposase system induces tumors de novo to generate mouse models that recapitulate human gliomas.

View Article and Find Full Text PDF

Biomimetic Cerium-Assisted Supra-Carbon Dots Assembly for Reactive Oxygen Species-Activated Atherosclerosis Theranostic.

Small

January 2025

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China.

Theranostic applications in atherosclerosis plaque microenvironment-triggered nanoplatforms are significantly compromised by the complex synthesis procedure, non-specific distribution, and limited therapeutic function. Therefore, development of a facile and feasible method to construct a pathology-based stimuli-responsive nanoplatform with satisfactory theranostic performance remains a demanding and highly anticipated goal. Herein, a novel class of multifunctional supra-carbon dots (CDs), denoted as MM@Ce-CDs NPs, by a simple nanoassembly and a subsequent coating with macrophage membrane (MM), is developed for the targeted reactive oxygen species-trigged theranostic and positive regulation of the pathological plaque microenvironment in AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!