AI Article Synopsis

  • Obstructive sleep apnea (OSA) is common in asthma patients, and the duration of asthma may increase the risk of developing OSA, indicating a possible link between the two conditions.
  • Researchers studied the breathing responses to low oxygen levels in rats with asthma (sensitized with ovalbumin) and compared them to control rats (saline), finding that those with asthma had heightened responses due to increased breathing frequency.
  • The study concluded that asthma-related inflammation, rather than mechanical issues in the lungs, may enhance breathing control mechanisms, potentially contributing to the ventilatory instability that could lead to sleep apnea in humans.

Article Abstract

Obstructive sleep apnea (OSA) is highly prevalent in patients with asthma. Asthma, dose-dependently to its duration, promotes incident OSA, suggesting that asthma plays a role in OSA pathogenesis. We hypothesized that asthma-related inflammation alters breathing control mechanisms, specifically the carotid chemoreflex. Accordingly, we measured hypoxic ventilatory responses (HVR) in awake, unrestrained, ovalbumin (OVA)-sensitized Brown Norway rats and compared them with responses in sham-sensitized (SALINE) controls. To differentiate the role of allergic inflammation from bronchoconstriction, we repeated hypoxic ventilatory response (HVR) after administration of formoterol, a long-acting bronchodilator. Blood and bronchoalveolar lavage (BAL) fluid were collected for quantification of inflammatory cytokines. The rise in ventilatory equivalent for O evoked by acute exposure to hypoxia was augmented following sensitization by OVA, whereas it remained stable after SALINE. This augmentation was driven by increased breathing frequency with no change in tidal volume. Tachypneic hyperventilation in normoxia was also observed with OVA. Neither the increased HVR nor excessive normoxic ventilation was affected by formoterol, suggesting that they were not secondary to lung mechanical constraints. Higher levels of inflammatory cytokines were observed in BAL fluid and serum of OVA versus SALINE. In OVA, serum interleukin-5 levels significantly correlated with change from baseline in ventilatory responses to severe hypoxia ([Formula: see text], 0.09). These observations are consistent with inflammation-induced enhancement of carotid chemoreflex function, i.e., increased controller gain, and they suggest a possible role for asthma-related allergic inflammation in the ventilatory instability known to promote upper airway collapse and sleep apnea in humans. Asthma is a risk factor for obstructive sleep apnea (OSA); however, the mechanisms are incompletely understood. In a rat model of allergic inflammation associated with asthma, we found that ventilation in normoxia and ventilatory responses to hypoxia were markedly enhanced and related with systemic inflammation. These alterations indicating carotid chemoreflex sensitization, known to promote ventilatory instability during sleep in humans, may contribute to the increased OSA risk in asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573259PMC
http://dx.doi.org/10.1152/jn.00301.2023DOI Listing

Publication Analysis

Top Keywords

sleep apnea
12
carotid chemoreflex
12
ventilatory responses
12
allergic inflammation
12
rat model
8
model allergic
8
obstructive sleep
8
apnea osa
8
hypoxic ventilatory
8
bal fluid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!