Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research highlights the efficacy of NaNbO as a coating for P2-NaNiMnO cathodes in sodium-ion batteries. The coating enhances the kinetic behavior and cyclability of the electrochemical cells, as shown by electrochemical measurements. XRD analysis indicates that Nb does not incorporate into the cathode structure, implying a physical interaction between the coating and the cathode material. XRF analysis and EDX mapping confirm the actual composition and uniform dispersion of elements throughout the sample, while the electron micrographs evidence the occurrence of NaNbO particles modifying the surface of the layered oxide. The Ni/Ni and Ni/Ni redox pairs, along with the partially reversible oxidation of oxide to peroxide anions, contribute significantly to cell capacity, as revealed by XPS spectra. This last effect and the appearance of a co-intercalated phase at high voltage are positive factors to provide fast kinetics. Cyclic voltammograms show that samples coated with 2-3% NaNbO have superior rate capability, with high capacitive response and apparent diffusion coefficients. These samples also have low impedance at the electrode-electrolyte interface, which helps deliver a high capacity at 5C. Further cycling at 1C shows improved cyclability in the bare and 3% coated samples, due to their higher diffusion coefficients on charging. Notably, the 3% NaNbO-coated sample exhibits excellent cyclability below 0 °C, making it a promising cathode material for sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503625 | PMC |
http://dx.doi.org/10.1021/acsami.4c09706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!