AI Article Synopsis

  • Testicular cancer is increasingly common among young adults, prompting research into new treatment options like isoalantolactone (IATL), a natural compound from specific plants.
  • The study shows that IATL reduces cancer cell viability and induces apoptosis (cell death) by affecting various cellular pathways and proteins involved in growth and death regulation.
  • Additionally, IATL promotes a process called ferroptosis and downregulates proteins that inhibit apoptosis, indicating its promise as an anticancer treatment for testicular cancer.

Article Abstract

Testicular cancer, a highly prevalent malignancy among young adults, has witnessed an alarming rise in recent decades. This study delves into the therapeutic potential of isoalantolactone (IATL), a natural product extracted from Inula helenium and Inula racemosa, against testicular cancer. Employing MTT assays and flow cytometry, we observed a dose-dependent reduction in cell viability and induction of cell cycle arrest at sub-G1 phase with increasing IATL concentrations. Furthermore, Annexin V/PI dual staining revealed IATL-induced apoptosis. Human Apoptosis Array analysis demonstrated IATL's influence on HIF-1α and TNF R1 expression, implicating its role in cancer cell growth and death regulation. Next-generation sequencing (NGS) and pathway analysis highlighted the involvement of ferroptosis and HIF-1 signaling in IATL-mediated effects. Western blotting validated the downregulation of key proteins associated with apoptosis inhibition and activation, confirming IATL's potential as an anticancer agent. Moreover, IATL induced ferroptosis by modulating expression levels of GPX4, xCT, NRF2, and HO-1. Our findings shed light on IATL's multifaceted anticancer mechanisms, emphasizing its potential as a therapeutic candidate for testicular cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501383PMC
http://dx.doi.org/10.18632/aging.206076DOI Listing

Publication Analysis

Top Keywords

testicular cancer
16
potential isoalantolactone
8
cancer
5
anticancer potential
4
testicular
4
isoalantolactone testicular
4
cancer analysis
4
analysis cytotoxicity
4
apoptosis
4
cytotoxicity apoptosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!