Leaf surface microbial communities play an important role in forest ecosystems and are known to be affected by environmental and host conditions, including diseases impacting the host. Phytophthora agathidicida is a soil-borne pathogen that causes severe disease (kauri dieback) in one of New Zealand's endemic trees, Agathis australis (kauri). This research characterised the microbial communities of the A. australis phyllosphere (i.e. leaf surface) using modern molecular techniques and explored the effects of P. agathidicida on those communities. Fresh leaves were collected from trees where P. agathidicida was and was not detected in the soil and characterisation of the leaf surface microbial community was carried out via high-throughput amplicon sequencing of the internal transcribed spacer (ITS) and 16S ribosomal RNA regions. Nutrients in leaf leachates were also measured to identify other possible drivers of microbial diversity. The dominant phyllosphere microbial phylum was Proteobacteria followed by Acidobacteria. The phyllosphere microbial richness of A. agathis associated with P. agathidicida-infected soils was found to be generally lower than where the pathogen was not detected for both prokaryote (bacterial) and fungal phyla. Leaf leachate pH as well as boron and silicon had significant associations with bacterial and fungal community structure. These findings contribute to the development of a comprehensive understanding of A. australis leaf surface microbial communities and the effects of the soil pathogen P. agathidicida on those communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481638 | PMC |
http://dx.doi.org/10.1007/s00248-024-02441-9 | DOI Listing |
RSC Adv
January 2025
Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374.
In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025 Guiyang, China.
Aims: To determine the optimum conditions for extracting Eucommia ulmoides gum (EUG) from Eucommia ulmoides leaves during fermentation by Coprinellus disseminatus. At the same time, the EUG characteristics were characterized.
Methods And Results: The ability of C.
PhytoKeys
December 2024
Southern Institute of Ecology, Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam Institute of Applied Materials Science, Vietnam Academy of Science and Technology Ho Chi Minh Vietnam.
is described as a new species endemic to Central Vietnam. It is morphologically closest to in having setose hairs on the abaxial leaf surface and a pedunculate head-like inflorescence but differs from the latter by a number of characteristics: shorter stem, 3-lobed stipules, narrowly lanceolate leaf blades with a cuneate-oblique base and 20-22 pairs of secondary veins, 3.5-4.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Cu-based catalysts for the electrochemical reduction of CO and CO exhibit a perplexingly unique reactivity toward multicarbon based products compared to other studied electrocatalysts. Here we use insights gained from a recent phenomenological 3-site microkinetic model and grand-canonical density functional theory calculations to clarify the importance of an underemphasized aspect critical to Cu's unique reactivity: a population of so-called "reservoir" sites. Using model Cu surface motifs, we discuss how these types can be represented by undercoordinated structural defects like step edges and grain boundaries which form a network of highly anisotropic migration channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!