With SARS-CoV-2 N protein as a model target, a signal-enhanced LFIA based on Au@Pt nanoparticles (NPs) as labels is proposed. This Au@Pt NPs combined the distinguished localized surface plasma resonance (LSPR) effect of Au NPs and the ultrahigh peroxidase-like catalytic activity of Pt NPs. Au@Pt NPs could trigger substrate chromogenic reaction, generating a color signal orders of magnitude darker than their intrinsic color. In the detection, after the coloration of the strips, 3,3',5,5'-tetramethylbenzidine (TMB) and HO were added, and a dark blue chelate (OxTMB) was produced soon, enhancing the band color significantly. After the signal amplification, the naked-eye detection limit for N protein reached 40 pg/mL. The detection sensitivity enhanced more than 1000 times than that without signal amplification. Compared with mainstream LFIA requiring complex readout instruments, the Au@Pt-based LFIA achieved a comparable sensitivity using naked eyes detection. This point is crucial, especially for unprofessional users or low-resource areas. Hence, this signal-enhanced LFIA may serve as a sensitive, cost-effective, and user-friendly detection method. It can shorten the testing window period and help identify early infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06697-3DOI Listing

Publication Analysis

Top Keywords

naked-eye detection
8
signal-enhanced lfia
8
au@pt nps
8
signal amplification
8
detection
5
nps
5
au@pt
4
au@pt nanoparticles-based
4
nanoparticles-based signal-enhanced
4
signal-enhanced lateral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!