Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification.

Biomacromolecules

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Published: October 2024

AI Article Synopsis

  • Silica-organic composites are being explored for their eco-friendly properties and unique interactions between macromolecules and aqueous silica, which enhance the physical traits of living systems.
  • The review discusses silicification in organisms and how various biomacromolecules may affect these processes, but notes that current research often lacks consistency and clarity.
  • Advances in biopolymer chemistry open new pathways to study the chemistry of functional groups within macromolecules, potentially leading to innovative biocomposite applications in fields like medicine and clean energy.

Article Abstract

Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00674DOI Listing

Publication Analysis

Top Keywords

silica-biomacromolecule interactions
4
interactions mechanistic
4
mechanistic understanding
4
silicification
4
understanding silicification
4
silicification silica-organic
4
silica-organic composites
4
composites receiving
4
receiving renewed
4
renewed attention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!