A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of age and BMI on vancomycin model choice in a Bayesian software: Lessons from a very large multi-site retrospective study. | LitMetric

AI Article Synopsis

  • - The study assesses the performance of various vancomycin pharmacokinetic (PK) models tailored to different age and BMI groups, aiming to enhance model-informed precision dosing (MIPD) for better drug optimization.
  • - Using a large database of 384,876 treatment courses from 155 U.S. health systems, the research evaluates the accuracy of eleven different models, finding that performance varies significantly by age and BMI, with older adults generally having more accurate predictions.
  • - The findings indicate that specific models, like the Colin model for younger adults and the Goti/Tong model for older, non-obese adults, outperform others, suggesting a need for tailored approaches in MIPD to achieve optimal vancomycin dosing.

Article Abstract

Background: Model-informed precision dosing (MIPD) optimizes drug doses based on pharmacokinetic (PK) model predictions, necessitating careful selection of models tailored to patient characteristics. This study evaluates the predictive performance of various vancomycin PK models across diverse age and BMI categories, drawing insights from a large multi-site database.

Methods: Adults receiving vancomycin intravenous therapy at United States health systems between January 1, 2022, and December 31, 2023, were included. Patient demographics, vancomycin administration records, and therapeutic drug monitoring levels (TDMs) were collected from the InsightRX database. Age and body mass index (BMI)-based subgroups were formed to assess model performance, with predictions made iteratively. The optimal model for each age-BMI subgroup was chosen based on predefined criteria: models were filtered for mean percentage error (MPE) ≤ 20% and normalized root mean squared error (RMSE) < 8 mg/L, and then the most accurate among them was selected.

Results: A total of 384,876 treatment courses across 155 US health systems were analyzed, contributing 841,604 TDMs. Eleven models were compared, showing varying accuracy across age-BMI categories (41%-73%), with higher accuracy observed once TDMs were available for Bayesian estimates of individual PK parameters. Models performed more poorly in younger adults compared to older adults, and the optimal model differed depending on age-BMI categories and prediction methods. Notably, in the a priori period, the Colin model performed best in adults aged 18-64 years across most BMI categories; the Goti/Tong model performed best in the older, non-obese adults; and the Hughes model performed best in many of the obese categories.

Conclusion: Our study identifies specific vancomycin PK models that demonstrate superior predictions across age-BMI categories in MIPD applications. Our findings underscore the importance of tailored model selection for vancomycin management, especially highlighting the need for improved models in younger adult patients. Further research into the clinical implications of model performance is warranted to enhance patient care outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/phar.4613DOI Listing

Publication Analysis

Top Keywords

age bmi
8
large multi-site
8
impacts age
4
vancomycin
4
bmi vancomycin
4
model
4
vancomycin model
4
model choice
4
choice bayesian
4
bayesian software
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!