A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics. | LitMetric

AI Article Synopsis

  • Scientists are using a new method called STAGUE to study how cells interact in space by creating special graphs from data.
  • This method helps them better understand how different cells work together, especially in human breast cancer tissues.
  • STAGUE is better than older methods because it finds new patterns in the data and reveals important information about genes that help cells communicate.

Article Abstract

Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615819PMC
http://dx.doi.org/10.1002/advs.202403572DOI Listing

Publication Analysis

Top Keywords

graph structure
16
cell graph
12
graph
8
structure learning
8
spatial transcriptomics
8
stague
6
spatially informed
4
informed graph
4
structure
4
learning extracts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!