Neuromuscular Transmission in a Biological Context.

Compr Physiol

Newcastle University, Newcastle upon Tyne, UK.

Published: October 2024

AI Article Synopsis

  • Neuromuscular transmission is how motor neurons tell muscles to move, which helps animals survive by allowing them to make purposeful movements.
  • While many animals share similar ways of sending signals to muscles, there are differences based on whether the movements are slow (like standing) or fast (like escaping danger).
  • The article examines how neuromuscular transmission works in various animals, including worms, flies, fish, mice, and humans, and shows that there are many ways this process can happen.

Article Abstract

Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphy.c240001DOI Listing

Publication Analysis

Top Keywords

neuromuscular transmission
24
motor neurons
12
neuromuscular
6
transmission
5
transmission biological
4
biological context
4
context neuromuscular
4
transmission process
4
process motor
4
neurons activate
4

Similar Publications

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

GV-58 is known to increase the opening time of the mammalian P-type calcium channel in presynaptic motor nerve terminals. GV-58 is suggested as a therapeutic agent for dampening the symptoms of amyotrophic lateral sclerosis. To further understand the mechanisms of GV-58 actions, the and crayfish neuromuscular junctions were used as models.

View Article and Find Full Text PDF

Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).

View Article and Find Full Text PDF

Background First-year medical students may find it challenging to integrate complex physiological concepts, particularly neuromuscular physiology. While concept mapping has shown promise in medical education, its specific application in teaching intricate physiological mechanisms still needs to be explored. With this background, the objective of the study was to assess the feasibility of using concept mapping among first-year medical students and to explore the perception of students about concept mapping as an educational tool.

View Article and Find Full Text PDF

Hyperkaliaemic cardiac arrest in Angelman's syndrome following suxamethonium.

BMJ Case Rep

December 2024

Critical Care, North West Anglia NHS Foundation Trust, Peterborough, UK.

We present a case of hyperkaliaemic cardiac arrest in a patient with Angelman's syndrome after administration of suxamethonium in rapid sequence intubation. The patient was admitted to the critical care unit in with aspiration pneumonia and intestinal obstruction. They had a cardiac arrest after suxamethonium administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!