AI Article Synopsis

  • - The study investigates how replacing cytoplasm influences browning in two cytoplasmic hybrids (L808-A2 and L808-B) compared to their parent strain (L808) by analyzing nuclear, mitochondrial mRNAs, and lncRNAs over three cultivation periods (80, 100, and 120 days).
  • - Results indicate that both time and cytoplasmic source affect the expression of genes related to browning, highlighting the importance of a specific NADPH-mediated antioxidant mechanism in protecting mycelia from oxidative stress caused by light exposure.
  • - The research also reveals significant gene interactions affecting the mycelia's surface characteristics, including melanin accumulation, and provides new insights into communication between the nucleus and mitochondria regarding structural

Article Abstract

To explore the reason for cytoplasmic replacement's significant effect on browning, transcriptomic data of nuclear (N) and mitochondrial (M) mRNAs and long noncoding RNAs (lncRNAs) in L808 and two cytoplasmic hybrids (cybrids) (L808-A2 and L808-B) of at three different culturing times (80, 100, and 120 days) were obtained. The results showed that the expression of N and M genes and lncRNAs changed with the culture time and cytoplasmic source. Cytoplasmic replacement significantly affected some M and N genes related to the internal mechanism and external morphological characteristics of browning. The internal browning mechanism should be the nicotinamide adenine dinucleotide phosphate (NADPH)-mediated antioxidant machinery to protect mycelia against oxidative stress induced by the generation of reactive oxygen species under light irradiation. External morphological characteristics were the changing features of brown films by melanin (an antioxidant) aggregation on the surface of the mycelia of the bag or log. Especially, some genes were related to the remodeling of the plasma membrane, extracellular enzymes of celluloses and hemicellulases, small molecules, and NADPH metabolic processes. Additionally, communication between the nucleus and mitochondria mediated by M- was reported for the first time, and it is mainly appreciated in M structural assembly, functional implementation, and cooperation with other organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c03506DOI Listing

Publication Analysis

Top Keywords

communication nucleus
8
nucleus mitochondria
8
external morphological
8
morphological characteristics
8
transcriptomic communication
4
browning
4
mitochondria browning
4
browning process
4
process explore
4
explore reason
4

Similar Publications

A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.

PLoS Genet

January 2025

Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive.

View Article and Find Full Text PDF

Non-peptide ligands (NPLs), including lipids, amino acids, carbohydrates, and non-peptide neurotransmitters and hormones, play a critical role in ligand-receptor-mediated cell-cell communication, driving diverse physiological and pathological processes. To facilitate the study of NPL-dependent intercellular interactions, we introduce MetaLigand, an R-based and web-accessible tool designed to infer NPL production and predict NPL-receptor interactions using transcriptomic data. MetaLigand compiles data for 233 NPLs, including their biosynthetic enzymes, transporter genes, and receptor genes, through a combination of automated pipelines and manual curation from comprehensive databases.

View Article and Find Full Text PDF

Human adipose depots are functionally distinct. Yet, recent single-nucleus RNA sequencing (snRNA-seq) analyses largely uncovered overlapping or similar cell-type landscapes. We hypothesized that adipocyte subtypes, differentiation trajectories and/or intercellular communication patterns could illuminate this depot similarity-difference gap.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!