MgH used in solid-state hydrogen storage still suffers from high thermal stability and slow hydrogen absorption-desorption kinetics. Here, we report a hybrid of MgH-TiC/graphene prepared through a facile wet chemical method followed by a ball-milling method. It was confirmed that the coupling of TiC and graphene possesses a synergistic effect on the hydrogen desorption and absorption reactions of MgH/Mg. The initial temperature of MgH-TiC/graphene to desorb hydrogen was reduced to 169 °C significantly and it could desorb 6.8 wt% H within 6 min at a constant temperature of 300 °C. Moreover, the desorbed sample could start to absorb hydrogen at room temperature and achieve a capacity of 6.0 wt% when the temperature was gradually increased to 350 °C. These results are far superior to pristine MgH, disclosing that the addition of two-dimensional TiC/graphene is an efficient strategy to boost the hydrogen storage performance of MgH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02868fDOI Listing

Publication Analysis

Top Keywords

hydrogen storage
12
storage performance
8
performance mgh
8
hydrogen
7
coupling two-dimensional
4
two-dimensional mxenes
4
mxenes graphene
4
graphene boosting
4
boosting hydrogen
4
mgh
4

Similar Publications

Ultrahigh-Power Carbon-Based Supercapacitors through Order-Disorder Balance.

Small

January 2025

Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.

Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!