In drylands, where water scarcity limits vascular plant growth, much of the primary production occurs at the soil surface. This is where complex macro- and microbial communities, in an intricate bond with soil particles, form biological soil crusts (biocrusts). Despite their critical role in regulating C and N cycling in dryland ecosystems, there is limited understanding of the fate of biologically fixed C and N from biocrusts into the mineral soil, or how climate change will affect C and N fluxes between the atmosphere, biocrusts, and subsurface soils. To address these gaps, we subjected biocrust-soil systems to experimental warming and drought under controlled laboratory conditions, monitored CO fluxes, and applied dual isotopic labeling pulses (CO and N). This allowed detailed quantification of elemental pathways into specific organic matter (OM) pools and microbial biomass via density fractionation and phospholipid fatty acid analyses. While biocrusts modulated CO fluxes regardless of the temperature regime, drought severely limited their photosynthetic C uptake to the extent that the systems no longer sustained net C uptake. Furthermore, the effect of biocrusts extended into the underlying 1 cm of mineral soil, where C and N accumulated as mineral-associated OM (MAOM). This was strongly associated with increased relative dominance of fungi, suggesting that fungal hyphae facilitate the downward C and N translocation and subsequent MAOM formation. Most strikingly, however, these pathways were disrupted in systems exposed to warming, where no effects of biocrusts on the elemental composition of the underlying soil nor on MAOM were determined. This was further associated with reduced net biological N fixation under combined warming and drought, highlighting how changing climatic conditions diminish some of the most fundamental ecosystem functions of biocrusts, with detrimental repercussions for C and N cycling and the persistence of soil organic matter pools in dryland ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17519 | DOI Listing |
Data Brief
February 2025
Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan.
Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Agricultural University of Hunan, Changsha, China.
Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Chinese Academy of Agricultural Sciences, State Key Laboratory of Efficient Utilization of Arid and Semiarid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Beijing, China.
Mowing is a primary practice in temperate meadows, which are severely degraded due to frequent mowing, overgrazing, and other factors, necessitating restoration and sustainable management. The natural recovery of these grasslands hinges on their germinable soil seed banks, which form the basis for future productivity. Thus, germinable soil seed banks are critical for restoring overexploited meadows.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.
View Article and Find Full Text PDFHeliyon
January 2025
Tigray Agricultural Research Institute, Mekelle Soil Research Center, Mekelle, Tigray, Ethiopia.
Sesame ( L.) is an important cash crop and plays a vital role in many people's livelihoods in Ethiopia. However, its production is low due to many constraints, and low soil fertility is among the major.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!