Introduction: Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model.
Methods: We generated mice with homozygous floxed and alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15).
Results: In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females.
Conclusion: Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458430 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1325286 | DOI Listing |
Front Endocrinol (Lausanne)
October 2024
Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.
Introduction: Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2022
Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave., Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, CA, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:
We have previously shown that monoamine oxidase A (MAO A) mediates prostate cancer growth and metastasis. Further, MAO A/Pten double knockout (DKO) mice were generated and demonstrated that the deletion of MAO A delayed prostate tumor development in the Pten knockout mouse model of prostate adenocarcinoma. Here, we investigated its effect on immune cells in the tumor microenvironment in MAO A/Pten DKO mouse model.
View Article and Find Full Text PDFPlant Cell Physiol
September 2022
Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown.
View Article and Find Full Text PDFStem Cell Reports
November 2021
Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA; Department and Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA; Division of Ophthalmology, Surgery Section, VA Ann Arbor Healthsystem, Ann Arbor, MI, USA. Electronic address:
p53 alterations occur during culture of pluripotent stem cells (PSCs), but the significance of these events on epigenetic control of PSC fate determination remains poorly understood. Wdr5 deletion in p53-null (DKO) mouse ESCs (mESCs) leads to impaired self-renewal, defective retinal neuroectoderm differentiation, and de-repression of germ cell/meiosis (GCM)-specific genes. Re-introduction of a WDR5 mutant with defective H3K4 methylation activity into DKO ESCs restored self-renewal and suppressed GCM gene expression but failed to induce retinal neuroectoderm differentiation.
View Article and Find Full Text PDFAtherosclerosis
December 2019
Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 639 Zhizaoju Road, 200011, China. Electronic address:
Background And Aims: Atherosclerosis is a chronic inflammatory disorder mediated by macrophage activation. MicroRNA-21 (miR-21) is a key regulator in the macrophage inflammatory response. However, the functional role of miR-21 in atherogenesis is far from clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!