MiR-875-5p suppresses Gli1 to alter the hedgehog signaling pathway, which in turn has hepatocellular cancer-related tumor suppressing properties.

Heliyon

Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China.

Published: September 2024

Background: One of the most prevalent cancers worldwide is HCC, which has put patient health at risk. Increasing evidence indicated that messenger RNAs (mRNAs) played significant roles in modulating tumorigenesis. It has been established that Gli1 acts as an oncogene in a number of malignancies. However, more research was necessary to understand the Gli1 regulation mechanism in HCC.

Methods: Microarray technology was used to evaluate the expression of mRNAs. RT-qPCR was utilized to evaluate Gli1 and miR-875-5p expression. To investigate the role of Gli1, tests using CCK-8, EdU, transwell, immunofluorescence, and Western blot analysis was performed. RIP, RNA pull down, and luciferase reporter assays were employed to verify the interaction between Gli1 and miR-875-5p.

Results: In tissues and cells of HCC, Gli1 expression appeared to be upregulated, especially in metastatic samples and advanced stages of the disease. A worse outcome was predicted by elevated Gli1 expression. Additionally, in HCC, Gli1 inhibition impeded the growth, migration, and development of the EMT. Since miR-875-5p was shown to have a molecular target in Gli1, miR-875-5p mediated the negative regulation of Gli1. In HCC tissues, its expression pattern was less prominent. In HCC tissues, there was an inverse relationship between Gli1 expression and miR-875-5p expression. Overexpressing Gli1 helped to partially counteract the suppression of HCC migration, proliferation, and EMT formation by miR-875-5p overexpression.

Conclusions: MiR-875-5p in HCC suppresses tumors by downregulating Gli1, which supplies a novel treatment for HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459020PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37771DOI Listing

Publication Analysis

Top Keywords

gli1
14
gli1 expression
12
hcc
8
gli1 mir-875-5p
8
mir-875-5p expression
8
hcc gli1
8
hcc tissues
8
mir-875-5p
7
expression
7
mir-875-5p suppresses
4

Similar Publications

Objective: The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms.

Methods: In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosisrelated genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs).

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.

View Article and Find Full Text PDF

Recent advances in molecular genetics, particularly in identifying and characterizing genetic abnormalities within mesenchymal neoplasms, have led to a more comprehensive and evolving classification system. Modern technological developments in cytogenetics and next-generation sequencing have enabled the analysis of small clinical samples, expanded our understanding of tumor biology, and improved the diagnostic, prognostic, and predictive precision by identifying targeted genetic alterations, confirming the presence of fusion transcripts, and/or revealing the overexpression of specific genes and their targets. In this review, we focus specifically on the -rearranged enteric tumor, a recent clinicopathological entity that has emerged within the expanding classification of mesenchymal tumors.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!