Introduction: Gliomas are the most common and aggressive type of primary brain tumor, with a poor prognosis despite current treatment approaches. Understanding the molecular mechanisms underlying glioma development and progression is critical for improving therapies and patient outcomes.
Methods: The current study comprehensively analyzed large-scale single-cell RNA sequencing and bulk RNA sequencing of glioma samples. By utilizing a series of advanced computational methods, this integrative approach identified the gene UPP1 (Uridine Phosphorylase 1) as a novel driver of glioma tumorigenesis and immune evasion.
Results: High levels of UPP1 were linked to poor survival rates in patients. Functional experiments demonstrated that UPP1 promotes tumor cell proliferation and invasion and suppresses anti-tumor immune responses. Moreover, UPP1 was found to be an effective predictor of mutation patterns, drug response, immunotherapy effectiveness, and immune characteristics.
Conclusions: These findings highlight the power of combining diverse machine learning methods to identify valuable clinical markers involved in glioma pathogenesis. Identifying UPP1 as a tumor growth and immune escape driver may be a promising therapeutic target for this devastating disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458454 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1475206 | DOI Listing |
Mol Oncol
January 2025
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.
Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.
View Article and Find Full Text PDFCancer Res
January 2025
Oregon Health & Science University, Portland, OR, United States.
Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Binzhou Medical University School of Nursing, Binzhou, 256603, Shandong, China.
Purpose: RING Finger 187 (RNF187) has recently emerged as a potential contributor to tumorigenesis. However, a comprehensive pan-cancer analysis of RNF187 in human tumors has not been undertaken until now.
Methods: Our study aims to investigate RNF187 expression across 33 different types of human tumors, utilizing data from the TCGA and GTEx databases.
MedComm (2020)
January 2025
Department of Oral and Maxillofacial Surgery Hospital of Stomatology Jilin University, Changchun Jilin province China.
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (mA) and 5-methylcytosine (mC), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!