AI Article Synopsis

  • The study investigates how sunlight interacts with volatile organic compounds (VOCs), particularly those from gasoline vapors, producing harmful byproducts that contribute to air pollution.
  • Researchers found that atmospheres created by irradiating gasoline and certain non-aromatic VOCs were mutagenic, meaning they could potentially cause genetic mutations, while dark atmospheres were not.
  • The findings suggest that while non-aromatic VOCs have a minor role in mutagenicity, combined with aromatic VOCs, they can account for a significant portion of the mutagenic effects of gasoline vapors, highlighting the need for emission reduction strategies to improve air quality and public health.

Article Abstract

The interaction of sunlight with volatile organic compounds (VOCs) emitted from various sources results in mutagenic photooxidation products that contribute substantially to air pollution. Evaporation of gasoline is one such source of VOCs; however, no studies have evaluated the mutagenicity of the photooxidation products of gasoline vapors or of many of the non-aromatic constituent VOCs of gasoline. Here we determined the mutagenicity in TA100 of atmospheres generated in a steady-state atmospheric simulation chamber by irradiating gasoline and individual non-aromatic VOCs in the presence of nitrogen oxides (NO) in air. In addition to gasoline, we evaluated α-pinene; 2-pentene; ethanol; isobutanol; isoprene; and 2,2,4-trimethylpentane (isooctane). Cells were exposed at the air-agar interface to the atmospheres for 1, 2, 4, 8, or 16 h. Atmospheres generated in the dark were not mutagenic. However, under irradiation all atmospheres other than that of 2,2,4-trimethylpentane were mutagenic, with mutagenic potencies spanning 8.6-fold. The mutagenicity was due exclusively to direct-acting, late-generation photooxidation products. The non-aromatic VOCs studied here contributed little to the mutagenic potency of the photooxidation products of gasoline. However, the sum of the mutagenic potencies of these atmospheres plus those from the photooxidation of some aromatic VOCs in gasoline measured here and elsewhere (Riedel et al., Atmos Environ, 178:164, 2018) accounted for 71% of the mutagenic potency of the photooxidation products of gasoline vapor. In photochemical mixtures with strong biogenic contributions, isoprene products may also contribute significantly to mutagenic potency. Strategies to reduce the emissions of gasoline and those VOCs whose photooxidation products are most mutagenic would reduce VOC-associated air pollution and improve public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457086PMC
http://dx.doi.org/10.1016/j.atmosenv.2024.120668DOI Listing

Publication Analysis

Top Keywords

photooxidation products
24
atmospheres generated
12
products gasoline
12
mutagenic potency
12
mutagenic
10
gasoline
10
photooxidation
8
vocs
8
gasoline vapor
8
products contribute
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!