AI Article Synopsis

  • Microbial fermentation is key for producing essential goods sustainably, with a focus on amino acid production from engineered organisms.
  • This study tested the safety of biomass products from bioengineered microorganisms using the AMES test and oral toxicity test in rats, finding no harmful effects at the doses tested.
  • The results support the potential use of these biomass products as safe feed materials, emphasizing the need for thorough safety assessments and adherence to regulatory standards in biotechnological applications.

Article Abstract

Microbial fermentation has emerged as a pivotal process for sustainable production of essential goods and chemicals. is a proficient platform organism that contributes significantly to amino acid production through microbial fermentation. Despite its recognized safety, challenges persist in efficiently biosynthesizing natural products compared with other organisms. This study evaluated the safety of biomass products from bioengineered through two different toxicological studies: a bacterial reverse mutation test (AMES test) and an acute oral toxicity test in rats. Three types of dried fermentation biomass products, each engineered for the enhanced production of specific amino acids (L-lysine, L-threonine, and L-tryptophan), were examined. The tests were conducted in compliance with Organization for Economic Co-operation and Development guidelines and revealed no mutagenicity or acute toxicity at the tested doses. These findings suggest the safety of biomass products from bioengineered as potential feed materials, although further toxicity studies are recommended for comprehensive evaluation. This study underscores the importance of stringent safety assessments for advancing biotechnological applications and provides valuable insights into the potential utilization of microbial fermentation products in various industries. Moreover, this study highlights the significance of regulatory compliance and adherence to international standards to ensure the safety and efficacy of novel biotechnological products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458549PMC
http://dx.doi.org/10.1016/j.toxrep.2024.101741DOI Listing

Publication Analysis

Top Keywords

biomass products
16
microbial fermentation
12
reverse mutation
8
acute oral
8
oral toxicity
8
safety biomass
8
products bioengineered
8
products
7
safety
5
assessment safety
4

Similar Publications

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Changing climates threaten crop growth and fodder yields in dryland farming. This study assessed two radish genotypes (LINE 2, ENDURANCE) under three water regimes (W1 = well-watered, W2 = moderate stress, W3 = severe stress) and two leaf harvesting options over two seasons (2021/22 and 2022/23). Key findings revealed that water regime significantly (P < 0.

View Article and Find Full Text PDF

Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products.

Biotechnol Adv

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:

The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.

View Article and Find Full Text PDF

Fungi associated with orange juice production and assessment of adhesion ability and resistance to sanitizers.

Int J Food Microbiol

December 2024

Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil. Electronic address:

Orange juice is widely consumed worldwide due to its sensory and nutritional characteristics. This beverage is susceptible to contamination by acidic-tolerant microorganisms due to its low pH, especially filamentous fungi and yeasts. To minimize fungal spoilage, companies usually submit juice to thermal treatments; sanitizers are also applied on surfaces to maintain the microbiological quality.

View Article and Find Full Text PDF

Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!