Deep, underground repositories are needed to isolate radioactive waste from the biosphere. Because bentonite is an integral component of many multibarrier repository systems, information on the hydraulic behavior of bentonite is crucial for modeling the long-term viability of such systems. In this paper the hydraulic behavior of bentonite samples was analyzed as a function of aggregate size, and samples were subjected to hydrothermal treatments involving contact with NaCl, KCl, and deionized water. Neutron and X-ray imaging were used to quantify water sorption into packed bentonite samples and bentonite swelling into the water column. The distance between the original clay-water interface and the wetting front was determined as a function of time. Average water uptake exhibited a square-root-of-time dependence in freshly prepared samples, but more variable rates were observed for samples previously in contact with water. The radiography was supported by small-angle neutron scattering analysis and ultra-small-angle neutron scattering analysis of aggregate size distributions and by inelastic neutron scattering to understand the physicochemical environment of the sorbed water. Results showed that hydrothermal treatment with KCl had the greatest effect of increased water transport in the bentonite, possibly as a result of the interaction of K with smectite layers in the clay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459881 | PMC |
http://dx.doi.org/10.1080/00295450.2020.1812348 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
Intense sources of very cold neutrons (VCNs) would be beneficial for various neutron scattering techniques and low-energy particle physics experiments. Binary clathrate hydrates hosting deuterated tetrahydrofuran (THF-d) and dioxygen show promise as potential moderators for such sources due to a rich spectrum of localized low-energy excitations of the encaged guest molecules. In this article, we present a reliable manufacturing technique for such hydrates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia.
The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!