Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphene (Gr) and carbon nanotubes (CNTs), the two intriguing carbon nanomaterials, have presented great potential in serving as high-performance electrocatalysts in lithium-sulfur (Li-S) chemistry. The concurrent management of both materials would achieve a promoted synergistic effect. Nevertheless, there still remains a lack of an effective material synthesis route. Herein, a single-step plasma-enhanced chemical vapor deposition (PECVD) strategy is devised to prepare Gr@CNTs heterostructures with strong bonded connections. In the PECVD system, the damaged sidewalls generated in CNT tubes can serve as appropriate nucleation sites for further Gr growth. The formation mechanisms are thoroughly explored in aspects of both experimental characterizations and theoretical calculations. To confirm the validity of this approach, thus-constructed Gr@CNTs architectures are employed as the sulfur host, enabling boosted redox kinetics of polysulfides. This project provides fundamental insight into the mechanism exploration for single-step PECVD growth of Gr@CNTs heterostructure, hence promoting the practical application prospect of carbon nanomaterials toward Li-S systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!