AI Article Synopsis

  • Adding silicon to graphite anodes significantly increases lithium-ion battery energy density but also causes mechanical instability due to volume changes during charging and discharging.
  • Research reveals that in silicon-rich graphite anodes, lithiation dynamics differ based on silicon content, with distinct behaviors observed in charge/discharge processes compared to graphite-only electrodes.
  • Key observations include the preferential lithiation of amorphous silicon and challenges in lithium diffusion, which are essential insights for improving the stability and performance of high-energy-density silicon-graphite anodes.

Article Abstract

Adding silicon (Si) to graphite (Gr) anodes is an effective approach for boosting the energy density of lithium-ion batteries, but it also triggers mechanical instability due to Si volume changes upon (de)lithiation reactions. In this work, component-specific (de)lithiation dynamics on Si-rich (30 and 70 wt.% Si) SiGr anodes at various charge/discharge C-rates are unveiled and compared to a graphite-only electrode (100Gr) via operando synchrotron X-ray diffraction coupled with differential capacity plots analysis. Results show preferential lithiation of amorphous Si above ≈200 mV and competing lithiation of Gr, amorphous Si, and crystalline Si below ≈200 mV. Discharge proceeds via sequential delithiation of Gr and amorphous lithium silicide. Si shifts the interconversion potentials of graphite intercalation compounds, lowering the Gr state of charge compared to 100Gr. In the 30% Si electrode, crystalline Si amorphization at potentials <110 mV is found to be kinetically hindered at C-rates higher than C/5, which can be key for enhancing the cycling stability of SiGr anodes. The 70% Si electrode exhibits restricted lithium diffusion in Gr, full Si amorphization, and LiSi formation. These findings related to the potential- and current-dependent dynamic changes on SiGr blends are crucial for designing stable high energy density SiGr anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202406615DOI Listing

Publication Analysis

Top Keywords

lithiation amorphous
8
deciphering impact
4
impact current
4
current composition
4
composition potential
4
potential lithiation
4
lithiation behavior
4
behavior si-rich
4
si-rich silicon-graphite
4
silicon-graphite anodes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!