A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dopamine-integrated all-hydrogel multi-electrode arrays for neural activity recording. | LitMetric

Dopamine-integrated all-hydrogel multi-electrode arrays for neural activity recording.

Mater Horiz

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.

Published: December 2024

AI Article Synopsis

  • Investigating brain neural circuits is crucial for improving diagnosis and treatment of neurodegenerative diseases, but traditional metal electrodes have issues like mechanical mismatches and poor resolution.
  • All-hydrogel neural electrodes with multi-electrode arrays aim to resolve these issues but have struggled with conductivity and bonding stability.
  • The new four-layer all-hydrogel electrode shows significantly improved conductivity and bonding, allowing for better recording of neural activity, thus enhancing research on neurodegenerative conditions.

Article Abstract

Investigation of brain neural circuits is essential for deciphering the diagnostics and therapeutics of neurodegenerative diseases. The main concerns with traditional rigid metal electrodes include intrinsic mechanical mismatch between sensing electrodes and tissues, unavoidable foreign body responses, and inadequate spatiotemporal resolution, resulting in a deficiency of sensing performance. All-hydrogel neural electrodes with multi-electrode arrays (MEAs) suggest a viable way to modulate the trade-off between tissue-mechanical compliance and excellent spatiotemporal recording capacity, but still face the issues of insufficient conductivity and unstable interlayer bonding. Herein, we constructed a four-layer all-hydrogel neural electrode, by sandwiching a conductive hydrogel layer within two encapsulation hydrogel layers, with a shielding hydrogel layer located on top. We introduce a dual-strategy treatment to induce controllable phase separation in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogel, which achieved ultra-high conductivity (up to 4176 S cm) comparable to that of metals and precise spatial resolution (∼15 μm) suitable for single neuron recording. In addition, the utilization of polyphenol chemistry mediated adaptive adhesion endowed this neural electrode with flexible and stable interlayer bonding among conductive-encapsulation-shielding layers and the tissue-electrode interface. Consequently, the all-hydrogel neural electrode exhibited a tenfold higher signal-to-noise ratio than a commercial silver electrode, realized the recording of weak neural activity signals within single and multiple neurons in epileptic rats, and applied man-made stimulation to the cerebral cortex of rats during seizures. This work provides a useful tool to understand the development, function and treatment of neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00939hDOI Listing

Publication Analysis

Top Keywords

all-hydrogel neural
12
neural electrode
12
multi-electrode arrays
8
neural activity
8
neurodegenerative diseases
8
interlayer bonding
8
hydrogel layer
8
neural
7
dopamine-integrated all-hydrogel
4
all-hydrogel multi-electrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!