Thermal resistance of energetic materials is critical due to its impact on safety and sustainability. However, developing predictive models remains challenging because of data scarcity and limited insights into quantitative structure-property relationships. In this work, a deep learning framework, named EM-thermo, was proposed to address these challenges. A data set comprising 5029 CHNO compounds, including 976 energetic compounds, was constructed to facilitate this study. EM-thermo employs molecular graphs and direct message-passing neural networks to capture structural features and predict thermal resistance. Using transfer learning, the model achieves an accuracy of approximately 97% for predicting the thermal-resistance property (decomposition temperatures above 573.15 K) in energetic compounds. The involvement of molecular descriptors improved model prediction. These findings suggest that EM-thermo is effective for correlating thermal resistance from the atom and covalent bond level, offering a promising tool for advancing molecular design and discovery in the field of energetic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c04849DOI Listing

Publication Analysis

Top Keywords

thermal resistance
16
energetic compounds
16
deep learning
8
resistance energetic
8
energetic
5
compounds
5
interpretable physicochemical-intuitive
4
physicochemical-intuitive deep
4
learning approach
4
approach design
4

Similar Publications

The Effects of Manual Therapy with TECAR Therapy, on Pain, Disability and Range of Motion in Women with Non-specific Chronic Neck Pain.

Med J Islam Repub Iran

September 2024

Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Background: This study was designed to compare the effectiveness of manual therapy alone and a combination of it and TECAR (Transfer Energy Capacitive and Resistive) therapies on the conditions of pain, disability, and neck range of motion (ROM) in patients with non-specific chronic neck pain (NCNP).

Methods: In this Randomized controlled study, 30 women with non-specific chronic neck pain were randomly divided into two groups: Manual therapy along with TECAR therapy (intervention group) and single manual therapy (control group). The participants were homogenized in terms of age, height, and weight.

View Article and Find Full Text PDF

Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures.

Cytotechnology

February 2025

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.

View Article and Find Full Text PDF

In order to provide long-term anti-corrosion properties of the coatings on the substrate, a microcapsule self-healing coatings system was designed in this paper. Microcapsules were synthesized with ethyl cellulose and octadecyl amine, which were added to epoxy resin to prepare self-healing coatings. The shape of microcapsules was spherical, the average particle size of microcapsules was about 100-120 μm, and the average thickness of microcapsules was 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!