Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460067 | PMC |
http://dx.doi.org/10.1186/s42523-024-00341-4 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand.
Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.
View Article and Find Full Text PDFAstrobiology
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!