Double-camouflaged tellurium nanoparticles for enhanced photothermal immunotherapy of tumor.

J Nanobiotechnology

School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.

Published: October 2024

AI Article Synopsis

  • Researchers studied tiny particles made of tellurium (Te) that can help treat tumors by converting light into heat.
  • They developed a special delivery system (RS-Te) that uses harmless bacteria to help get these particles to where they are needed in the body safely.
  • This new method not only heats up tumors but also helps the immune system fight cancer more effectively by boosting certain immune cells.

Article Abstract

The photothermal conversion properties of tellurium (Te) nanoparticles have been extensively investigated, rendering them a promising candidate for tumor photothermal therapy. However, there is still room for improvement in the development of efficient Te-based drug delivery systems. Here, Te nanoparticles are mineralized with bioactive molecules within attenuated Salmonella (S-Te), which are subsequently taken up by macrophages (RAW264.7) to construct a double-camouflaged delivery platform (RS-Te). Remarkably, RS-Te retains superior photothermal properties under near-infrared irradiation. The mineralization process eliminates bacterial proliferation potential, thereby mitigating the risk of excessive bacterial growth in vivo. Furthermore, the uptake of bacteria by macrophages not only polarizes them into M1 macrophages to induce an anti-tumor immune response but also circumvents any adverse effects caused by complex antigens on the bacterial surface. The results show that RS-Te can effectively accumulate and retain in tumors. RS-Te-mediated photothermal immunotherapy largely promotes the maturation of dendritic cells and priming of cytotoxic T cells induced by near-infrared laser irradiation. Moreover, RS-Te can switch the activation of macrophages from an immunosuppressive M2 phenotype to a more inflammatory M1 state. The double-camouflaged delivery system may offer highly efficient and safe cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462725PMC
http://dx.doi.org/10.1186/s12951-024-02853-2DOI Listing

Publication Analysis

Top Keywords

tellurium nanoparticles
8
photothermal immunotherapy
8
tumor photothermal
8
double-camouflaged delivery
8
photothermal
5
double-camouflaged tellurium
4
nanoparticles enhanced
4
enhanced photothermal
4
immunotherapy tumor
4
photothermal conversion
4

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.

View Article and Find Full Text PDF

Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature.

View Article and Find Full Text PDF

A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!