A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the mA modification of VDAC3. | LitMetric

Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by β-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461877PMC
http://dx.doi.org/10.1038/s41598-024-75033-9DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
24
m6a modification
16
vdac3 m6a
12
m6a methylation
12
vdac3
9
senescence osteogenic
8
etoposide-induced senescence
8
senescence promoted
8
promoted osteogenic
8
overexpression inhibited
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!