A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scalable incident detection via natural language processing and probabilistic language models. | LitMetric

AI Article Synopsis

  • Post-marketing safety surveillance can be improved by detecting clinical events through spontaneous reporting, but it requires healthcare professionals to be well-informed and aware of the reporting process.
  • The study introduces a new method for identifying incidents using unstructured clinical data and natural language processing, validated against traditional methods for two specific health concerns: suicide attempts and sleep-related behaviors.
  • Results showed that while the new approach effectively identified suicide attempts with decent precision, it struggled more with sleep-related behaviors; additionally, performance varied by race, highlighting the need for careful monitoring and bias reduction in healthcare AI applications.

Article Abstract

Post marketing safety surveillance depends in part on the ability to detect concerning clinical events at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires awareness and understanding among healthcare professionals to achieve its potential. Reliance on readily available structured data such as diagnostic codes risks under-coding and imprecision. Clinical textual data might bridge these gaps, and natural language processing (NLP) has been shown to aid in scalable phenotyping across healthcare records in multiple clinical domains. In this study, we developed and validated a novel incident phenotyping approach using unstructured clinical textual data agnostic to Electronic Health Record (EHR) and note type. It's based on a published, validated approach (PheRe) used to ascertain social determinants of health and suicidality across entire healthcare records. To demonstrate generalizability, we validated this approach on two separate phenotypes that share common challenges with respect to accurate ascertainment: (1) suicide attempt; (2) sleep-related behaviors. With samples of 89,428 records and 35,863 records for suicide attempt and sleep-related behaviors, respectively, we conducted silver standard (diagnostic coding) and gold standard (manual chart review) validation. We showed Area Under the Precision-Recall Curve of ~ 0.77 (95% CI 0.75-0.78) for suicide attempt and AUPR ~ 0.31 (95% CI 0.28-0.34) for sleep-related behaviors. We also evaluated performance by coded race and demonstrated differences in performance by race differed across phenotypes. Scalable phenotyping models, like most healthcare AI, require algorithmovigilance and debiasing prior to implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461638PMC
http://dx.doi.org/10.1038/s41598-024-72756-7DOI Listing

Publication Analysis

Top Keywords

suicide attempt
12
sleep-related behaviors
12
natural language
8
language processing
8
safety surveillance
8
clinical textual
8
textual data
8
scalable phenotyping
8
healthcare records
8
validated approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!