A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Multi-Layer Techno-Economic-Environmental Energy Management Optimization in Cooperative Multi-Microgrids with Demand Response Program and Uncertainties Consideration. | LitMetric

This paper presents a multi-layer, multi-objective (MLMO) optimization model for techno-economic-environmental energy management in cooperative multi-Microgrids (MMGs) that incorporates a Demand Response Program (DRP). The proposed MLMO approach simultaneously optimizes operating costs, MMG operator benefits, environmental emissions, and MMG dependency. This paper proposed a new hybrid ε-lexicography-weighted-sum that eliminates the need to normalize or scalarize objectives. The first layer of the model schedules MMG resources with DRP to minimize operating costs (local generation and power transactions with the utility grid) and maximize MMG profit. The second layer achieves the environmental operation of the MMG, while the third layer maximizes MMG reliability. This paper also proposed a new application of a recently developed enhanced equilibrium optimizer (EEO) for solving the three-layer EM problem. In addition, the uncertainties of solar power generation, wind power generation, load demand, and energy prices are considered based on the probabilistic 2m + 1 Point estimation method (PEM) approach. Three case studies are presented to verify the proposed MLMO approach on an MMG test system. In Case I, a deterministic EM is solved to simulate the MMG as a single layer to minimize costs and maximize benefits through DRP, while Case II solves the MLMO optimization problem. Simulation results show that the proposed MLMO technique reduces environmental emissions by 2.45% and 3.5% in its optimization layer and at the final layer, respectively. The independence index is also enhanced by 2.49% and 4.8% in its layer only and as a total increase, respectively. Case III is for the probabilistic EM simulation; due to the uncertain variables effect, the mean value in this case is increased by about 2.6% over Case I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461651PMC
http://dx.doi.org/10.1038/s41598-024-72706-3DOI Listing

Publication Analysis

Top Keywords

proposed mlmo
12
techno-economic-environmental energy
8
energy management
8
cooperative multi-microgrids
8
demand response
8
response program
8
mlmo optimization
8
mlmo approach
8
operating costs
8
mmg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!