Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3), we showed that the frequency of SA1 impulses was significantly lower in ASIC3 mice than in littermate wild-type ASIC3 mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580779 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0885-24.2024 | DOI Listing |
Behav Res Methods
December 2024
Algoritmi Research Centre, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
The vibration perception threshold (VPT) is the minimum amplitude required for conscious vibration perception. VPT assessments are essential in medical diagnostics, safety, and human-machine interaction technologies. However, factors like age, health conditions, and external variables affect VPTs.
View Article and Find Full Text PDFPain
December 2024
Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
The spread of pain across body locations remains poorly understood but may provide important insights into the encoding of sensory features of noxious stimuli by populations of neurons. In this psychophysical experiment, we hypothesized that more intense noxious stimuli would lead to spread of pain, but more intense light stimuli would not produce perceptual radiation. Fifty healthy volunteers (27 females, 23 males, ages 14-44 years) participated in this study wherein noxious stimuli (43, 45, 47, and 49°C) were applied to glabrous (hand) and hairy skin (forearm) skin with 5-second and 10-second durations.
View Article and Find Full Text PDFJ Neural Eng
November 2024
Institute of Biomedical Engineering, Boğaziçi University, İstanbul 34684, Turkey.
Brain-computer interfaces (BCI) are promising for severe neurological conditions and there are ongoing efforts to develop state-of-the-art neural interfaces, hardware, and software tools. We tested the potential of novel reduced graphene oxide (rGO) electrodes implanted epidurally over the hind limb representation of the primary somatosensory (S1) cortex of rats, and compared them to commercial platinum-iridium (Pt-Ir) 16-channel electrodes (active site diameter: 25m).Motor and somatosensory information was decoded offline from microelectrocorticography (ECoG) signals recorded while unrestrained rats performed a simple behavioral task: pressing a lever and the subsequent vibrotactile stimulation of the glabrous skin at three displacement amplitude levels and at two sinusoidal frequencies.
View Article and Find Full Text PDFSci Rep
November 2024
School of Biomedical Sciences, UNSW Sydney, Sydney, Australia.
Among the various classes of fast-adapting (FA) tactile afferents found in hairy and glabrous skin, FA2 afferents, associated with Pacinian corpuscles (PC), preferentially signal high-frequency sinusoidal events corresponding with vibration percepts, in contrast to other classes associated with lower frequency flutter percepts. The FA2-PC complex is also uniquely sensitive to distant sources of vibration mechanically transmitted through anatomical structures. In the present study, we used a pulsatile waveform to assess the contribution of FA2 afferents to the perception of flutter-range frequency stimuli (~ 20 Hz) in combination with two methods to abolish local FA inputs and force a dependence on FA2 via transmission from adjacent structures.
View Article and Find Full Text PDFSmall
October 2024
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
High-fidelity wireless electrophysiological monitoring is essential for ambulatory healthcare applications. Soft solid-like hydrogels have received significant attention as epidermal electrodes because of their tissue-like mechanical properties and high biocompatibility. However, it is challenging to develop a hydrogel electrode that provides robust contact and high adhesiveness with glabrous skin and hairy scalp for high-fidelity, continuous electrophysiological signal detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!