Somatosensory coding in rodents has been mostly studied in the whisker system and hairy skin, whereas the function of low-threshold mechanoreceptors (LTMRs) in the rodent glabrous skin has received scant attention, unlike in primates where the glabrous skin has been the focus. The relative activation of different LTMR subtypes carries information about vibrotactile stimuli, as does the rate and temporal patterning of LTMR spikes. Rate coding depends on the probability of a spike occurring on each stimulus cycle (reliability), whereas temporal coding depends on the timing of spikes relative to the stimulus cycle (precision). Using in vivo extracellular recordings in male rats and mice of either sex, we measured the reliability and precision of LTMR responses to tactile stimuli including sustained pressure and vibration. Similar to other species, rodent LTMRs were separated into rapid-adapting (RA) or slow-adapting based on their response to sustained pressure. However, unlike the dichotomous frequency preference characteristic of RA1 and RA2/Pacinian afferents in other species, rodent RAs fell along a continuum. Fitting generalized linear models to experimental data reproduced the reliability and precision of rodent RAs. The resulting model parameters highlight key mechanistic differences across the RA spectrum; specifically, the integration window of different RAs transitions from wide to narrow as tuning preferences across the population move from low to high frequencies. Our results show that rodent RAs can support both rate and temporal coding, but their heterogeneity suggests that coactivation patterns play a greater role in population coding than for dichotomously tuned primate RAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561868PMC
http://dx.doi.org/10.1523/JNEUROSCI.1252-24.2024DOI Listing

Publication Analysis

Top Keywords

glabrous skin
12
rodent ras
12
vibrotactile stimuli
8
rodent glabrous
8
rate temporal
8
coding depends
8
stimulus cycle
8
temporal coding
8
reliability precision
8
sustained pressure
8

Similar Publications

Article Synopsis
  • The study examines the superficial palmar branch of the radial artery (SUPBRA) to improve techniques for reconstructing palmar skin, focusing on its anatomy and harvesting methods.
  • Researchers dissected 19 male hand specimens to gather detailed anatomical data, including dimensions and positions of key structures related to SUPBRA, analyzing how best to utilize this flap in reconstruction efforts.
  • Results indicated that the SUPBRA has adequate dimensions for viability in surgical applications, with specific measurements and the identification of critical vascular contributions that ensure successful use in cases of hand injury.
View Article and Find Full Text PDF

How to determine hands' vibration perception thresholds - a systematic review.

Behav Res Methods

December 2024

Algoritmi Research Centre, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.

The vibration perception threshold (VPT) is the minimum amplitude required for conscious vibration perception. VPT assessments are essential in medical diagnostics, safety, and human-machine interaction technologies. However, factors like age, health conditions, and external variables affect VPTs.

View Article and Find Full Text PDF

The spread of pain across body locations remains poorly understood but may provide important insights into the encoding of sensory features of noxious stimuli by populations of neurons. In this psychophysical experiment, we hypothesized that more intense noxious stimuli would lead to spread of pain, but more intense light stimuli would not produce perceptual radiation. Fifty healthy volunteers (27 females, 23 males, ages 14-44 years) participated in this study wherein noxious stimuli (43, 45, 47, and 49°C) were applied to glabrous (hand) and hairy skin (forearm) skin with 5-second and 10-second durations.

View Article and Find Full Text PDF

Brain-computer interfaces (BCI) are promising for severe neurological conditions and there are ongoing efforts to develop state-of-the-art neural interfaces, hardware, and software tools. We tested the potential of novel reduced graphene oxide (rGO) electrodes implanted epidurally over the hind limb representation of the primary somatosensory (S1) cortex of rats, and compared them to commercial platinum-iridium (Pt-Ir) 16-channel electrodes (active site diameter: 25m).Motor and somatosensory information was decoded offline from microelectrocorticography (ECoG) signals recorded while unrestrained rats performed a simple behavioral task: pressing a lever and the subsequent vibrotactile stimulation of the glabrous skin at three displacement amplitude levels and at two sinusoidal frequencies.

View Article and Find Full Text PDF
Article Synopsis
  • FA2 tactile afferents, associated with Pacinian corpuscles, are specialized for detecting high-frequency vibrations, unlike other afferents that focus on lower frequencies.
  • In this study, researchers used methods to block local tactile input and tested how well FA2 afferents could still perceive flutter-range frequencies (~20 Hz) on different skin types.
  • Findings showed that even when local receptors were blocked, the perception of flutter-range frequencies remained consistent, indicating that FA2-PC systems can encode this type of frequency without relying on inputs from low-frequency receptors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!