It is becoming increasingly common for researchers to consider leveraging information from external sources to enhance the analysis of small-scale studies. While much attention has focused on univariate survival data, correlated survival data are prevalent in epidemiological investigations. In this article, we propose a unified framework to improve the estimation of the marginal accelerated failure time model with correlated survival data by integrating additional information given in the form of covariate effects evaluated in a reduced accelerated failure time model. Such auxiliary information can be summarized by using valid estimating equations and hence can then be combined with the internal linear rank-estimating equations via the generalized method of moments. We investigate the asymptotic properties of the proposed estimator and show that it is more efficient than the conventional estimator using internal data only. When population heterogeneity exists, we revise the proposed estimation procedure and present a shrinkage estimator to protect against bias and loss of efficiency. Moreover, the proposed estimation procedure can be further refined to accommodate the non-negligible uncertainty in the auxiliary information, leading to more trustable inference conclusions. Simulation results demonstrate the finite sample performance of the proposed methods, and empirical application on the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial substantiates its practical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.10224DOI Listing

Publication Analysis

Top Keywords

accelerated failure
12
failure time
12
time model
12
survival data
12
leveraging external
8
marginal accelerated
8
correlated survival
8
proposed estimation
8
estimation procedure
8
external aggregated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!