Proton radiotherapy's efficacy relies on an accurate relative stopping power (RSP) map of the patient to optimise the treatment plan and minimize uncertainties. Currently, a conversion of a Hounsfield Units map obtained by a common x-ray computed tomography (CT) is used to compute the RSP. This conversion is one of the main limiting factors for proton radiotherapy. To bypass this conversion a direct RSP map could be obtained by performing a proton CT (pCT). The focal point of this article is to present a proof of concept of the potential of fast pixel technologies for proton tracking at clinical facilities.A two-layer tracker based on the TJ-Monopix1, a depleted monolithic active pixel sensor (DMAPS) chip initially designed for the ATLAS, was tested at the proton minibeam radiotherapy beamline at the Curie Institute. The chips were subjected to 100 MeV protons passing through the single slit collimator (0.4×20mm) with fluxes up to1.3×107p s cm. The performance of the proton tracker was evaluated with GEANT4 simulations.The beam profile and dispersion in air were characterized by an opening of 0.031 mm cm, and aσx=0.172mm at the position of the slit. The results of the proton tracking show how the TJ-Monopix1 chip can effectively track protons in a clinical environment, achieving a tracking purity close to 70%, and a position resolution below 0.5 mm; confirming the chip's ability to handle high proton fluxes with a competitive performance.This work suggests that DMAPS technologies can be a cost-effective alternative for proton imaging. Additionally, the study identifies areas where further optimization of chip design is required to fully leverage these technologies for clinical ion imaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad84b3 | DOI Listing |
J Infect Dis
January 2025
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
Plant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
Purpose: Randomized trials have demonstrated similar local tumor control in patients treated with accelerated partial-breast irradiation (APBI) compared with whole-breast irradiation. However, the optimal APBI dose for maximizing tumor control and minimizing toxicity is uncertain.
Methods And Materials: We enrolled patients ≥18 years of age with grade 1 or 2 ductal carcinoma in situ or stage I invasive breast cancer and resection margins ≥2 mm between 2003 and 2011 to a sequential dose-escalation trial using 3-dimensional conformal external beam APBI giving twice daily 4 Gy fractions with total doses of 32 Gy, 36 Gy, and 40 Gy.
Langmuir
January 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China.
To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!