Field aging slows down biochar-mediated soil carbon dioxide emissions.

J Environ Manage

College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:

Published: November 2024

AI Article Synopsis

  • Biochar is important for helping soil store carbon, but we don’t know enough about how it changes after being used for a long time in different soils.
  • Researchers added rice and maize biochar to two types of soil (one acidic and one alkaline) for a year to study how the biochar changed and how it affected CO emissions.
  • The study found that after a year, the biochar changed its structure and helped reduce CO emissions while promoting better carbon storage in the soil.

Article Abstract

Biochar is widely used due to its potential in direct or indirect soil carbon sequestration. However, there is a lack of comprehensive studies on the changes in the physicochemical properties of biochar after long-term application in different types of soils and the effects on CO emissions. In this study, paddy soil and fluvisol were selected as typical acidic and alkaline soils. Rice biochar (RB) and maize biochar (MB) were incorporated into paddy soil and fluvisol for one year, and characterizations (e.g., SEM-EDS, FTIR, 3D-EEM, and TG-DTG) of pristine and aged biochars were analyzed. Incubation experiments were conducted to assess the impact of aged biochar on CO emissions from paddy soil and fluvisol. Results indicated consistent trends in the physicochemical properties of biochar after one year of aging in both acidic and alkaline soils. Aged biochars exhibited significant structural degradation, increased specific surface area, and increased oxygen-containing functional groups. The DOM fluorescence intensity of biochar decreased and the thermal stability increased after aging. Compared to pristine biochar, aged biochar promoted soil carbon sequestration, resulting in varied reductions in cumulative CO emissions from paddy soil and fluvisol in the short term. Spearman's correlation coefficient analysis and PCA loading plot revealed that field-aged biochar primarily influenced CO emissions from soil and carbon sequestration by reducing biochar DOC release and bioavailability of DOM, while enhancing the humification of biochar DOM. These findings suggest that aged biochar favors soil carbon sequestration in the short term, both in acidic and alkaline soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122811DOI Listing

Publication Analysis

Top Keywords

soil carbon
20
carbon sequestration
16
paddy soil
16
soil fluvisol
16
biochar
13
acidic alkaline
12
alkaline soils
12
aged biochar
12
soil
9
physicochemical properties
8

Similar Publications

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF
Article Synopsis
  • Land use and agricultural practices significantly impact soil fungal communities, which in turn affect overall soil health.
  • A study examined fungal communities across different soil layers (up to 80 cm) in four types of boreal soils: organic crop rotation, conventional crop rotation, meadow, and forest.
  • Findings revealed that soil type influenced specific fungal groups, with forests showing higher beneficial fungi, meadows having more decomposing fungi, and crop rotations featuring increased plant pathogens, highlighting the need to analyze subsoils in soil health research.
View Article and Find Full Text PDF
Article Synopsis
  • This study explores how bauxite mining impacts soil quality and microbial health in mining-adjacent areas, which has been under-researched compared to other types of mining like coal and copper.
  • Soil samples from locations near an active bauxite mine showed high levels of heavy metals (like chromium and lead), acidity, and aluminum, negatively affecting important microbial indicators such as enzyme activity and microbial biomass.
  • The research found that the concentrations of organic carbon could help mitigate some of the acidity effects, with acid phosphatase enzyme being a key factor in differences seen across various sampling sites.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!