AI Article Synopsis

  • Arachin (ARA) is a protein and resveratrol (RES) is a bioactive compound found in peanuts, and their interaction was studied to understand how they affect each other on a molecular level.
  • Using multispectral analysis and computational chemistry, researchers found that RES can quench ARA's intrinsic fluorescence and that their interaction is endothermic, spontaneous, and driven mainly by hydrophobic forces.
  • Molecular dynamics simulations revealed that specific amino acids play a key role in the strong affinity between ARA and RES, and the study's findings support potential food industry applications for their complex.

Article Abstract

Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141435DOI Listing

Publication Analysis

Top Keywords

computational chemistry
8
interaction
6
investigating interaction
4
interaction mechanisms
4
mechanisms arachin
4
arachin resveratrol
4
resveratrol utilizing
4
utilizing multi-spectroscopy
4
multi-spectroscopy computational
4
chemistry arachin
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.

View Article and Find Full Text PDF

Anticancer diiron aminocarbyne complexes with labile N-donor ligands.

Eur J Med Chem

January 2025

University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy. Electronic address:

The novel diiron amine complexes [FeCp(CO)(NHR')(μ-CO){μ-CN(Me)(Cy)}]CFSO [R' = H, 3; Cy, 4; CHCHNH, 5; CHCHNMe, 6; CHCH(4-CHOMe), 7; CHCH(4-CHOH), 8; Cp = η-CH, Cy = CH = cyclohexyl] were synthesized in 49-92 % yields from [FeCp(CO)(μ-CO){μ-CN(Me)(Cy)}]CFSO, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [FeCp(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CFSO (R = Cy, 2a; Me, 2b; Xyl = 2,6-CHMe, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions.

View Article and Find Full Text PDF

Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides.

Bioorg Chem

January 2025

Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:

The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!