Ruscogenin attenuates osteoarthritis by modulating oxidative stress-mediated macrophage reprogramming via directly targeting Sirt3.

Int Immunopharmacol

Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Synovial inflammation, cartilage erosion, and subchondral osteosclerosis contribute to the progression of osteoarthritis (OA), with M1 macrophages playing a key role in cartilage degradation.
  • The study aims to determine if Ruscogenin can reduce cartilage degeneration in rats with OA by altering macrophage behavior and exploring its mechanisms.
  • Ruscogenin demonstrated significant protective effects on articular cartilage in OA models by regulating macrophage reprogramming and preventing chondrocyte damage through lowering ROS levels.

Article Abstract

Background: Synovial inflammation, Cartilage erosion, and subchondral osteosclerosis, which are collectively referred to as the triad of pathogenesis, contribute to osteoarthritis (OA) progression. Specifically, the M1 macrophage in the synovium worsens the development of the illness and is a significant factor in the deterioration and functioning of cartilage.

Objective: To investigate whether Ruscogenin attenuates progressive degeneration of articular cartilage in rats with anterior cruciate ligament transection (ACLT)-induced osteoarthritis (OA) by modulating macrophage reprogramming and to explore its specific mechanism of action.

Methods: In vitro, SW1353 cells and RAW264.7 cells were applied to elucidate the mechanisms by which Ruscogenin protects articular cartilage. Specifically, the expression levels of molecules related to cartilage ECM synthesis and degradation enzymes and macrophages were analysed. In vivo, a rat osteoarthritis model was established using ACLT. The protective effect of Ruscogenin on articular cartilage was observed.

Results: Ruscogenin significantly reversed LPS-induced macrophage inflammatory response and promoted cartilage regeneration-related factors. In addition, Ruscogenin had a significant protective effect on the knee joint of ACLT rats, effectively preventing cartilage degeneration. These positive therapeutic effects were achieved on the one hand by Ruscogenin regulating macrophage reprogramming by targeting Sirt3, and on the other hand Ruscogenin could attenuate the ROS level of chondrocytes thereby inhibiting chondrocyte ferroptosis.

Conclusions: Ruscogenin exerts chondroprotective effects by regulating macrophage reprogramming and inhibiting chondrocyte ferroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113336DOI Listing

Publication Analysis

Top Keywords

macrophage reprogramming
16
articular cartilage
12
ruscogenin
9
ruscogenin attenuates
8
osteoarthritis modulating
8
targeting sirt3
8
hand ruscogenin
8
regulating macrophage
8
inhibiting chondrocyte
8
cartilage
7

Similar Publications

Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Sepsis is a major cause of morbidity and mortality, but our understanding of the mechanisms underlying survival or susceptibility is limited. Here, as pathogens often subvert host defence mechanisms, we hypothesized that this might influence the outcome of sepsis. We used microbiota analysis, faecal microbiota transplantation, antibiotic treatment and caecal metabolite analysis to show that gut-microbiota-derived tryptophan metabolites including indoles increased host survival in a mouse model of Serratia marcescens sepsis.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

Sci Signal

January 2025

Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.

Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!