Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Histone deacetylases (HDACs) play critical roles in cardiovascular diseases (CVDs). In addition, reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) exert damaging effects due to oxidative stress on heart and blood vessels. Although NOX-dependent ROS production is implicated in pathogenesis, the relationship between HDACs and NOXs in CVDs remains to be elucidated. Here, we present an overview of the regulatory effects and interconnected signaling pathways of HDACs and NOXs in CVDs. Improved insights into these relationships will facilitate the discovery of novel therapeutic agents that target HDACs, oxidase stress pathways, and the interactions between these systems which may be highly effective in the prevention and treatment of cardiovascular disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491726 | PMC |
http://dx.doi.org/10.1016/j.redox.2024.103379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!