A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application value of individualized tube voltage, contrast injection, and adaptive statistical iterative reconstruction V algorithm based on body mass index in renal computed tomography angiography for radiation and iodinated contrast dose reduction. | LitMetric

AI Article Synopsis

  • - The study aimed to assess the effectiveness of using body mass index (BMI)-specific kilovoltage peak (kVp) settings and contrast injection methods, combined with adaptive statistical iterative reconstruction, to lower radiation and contrast medium doses in renal computed tomography angiography (CTA).
  • - It involved 100 patients divided into two groups: one following a personalized kVp approach based on BMI and the other using a standard kVp of 100, with results showing that the personalized method led to a significant decrease in radiation (28.4%) and contrast medium doses (27.2%) without compromising image quality.
  • - The findings suggest that tailoring CT scan parameters to individual BMI not only enhances patient safety by reducing exposure but also maintains diagnostic

Article Abstract

Objectives: To explore the application value of body mass index (BMI)-based kilovoltage peak (kVp) selection and contrast injection protocol combined with different adaptive statistical iterative reconstruction V (ASIR-V) strengths in renal computed tomography angiography (CTA) in reducing radiation and contrast medium (CM) doses.

Methods: One-hundred renal CTA patients were prospectively enrolled and were divided into individualized kVp group (group A, n = 50) and conventional 100 kVp group (group B, n = 50), both with automatic tube current modulation and CM of Iohexol at 350 mgI/mL concentration. Group A: 70 kVp, noise index (NI) of 18 and CM dose rate of 17 mgI/kg/s for 10 s for BMI <25 kg/m2 patients; 80 kVp, NI = 17, and CM dose rate of 19 mgI/kg/s for 10 s for 25 kg/m2≤BMI≤30 kg/m2 patients. Group B: 100 kVp, 50 mL of CM at the flow rate of 4.5 mL/s. The objective image quality, effective radiation dose, CM dose, injection rate, and image quality were compared between the 2 groups.

Results: There was no significant difference in patient characteristics between the 2 groups (P > .05). Compared to group B, group A significantly reduced effective radiation dose by 28.4%, CM dose by 27.2%, and injection rate by 22.7% (all P < .001). The 2 groups had similar SD values in erector spine (P > .05). Group A had significantly higher CT values, SNR, and CNR values of the renal arteries than group B (all P < .001). The 2 radiologists had excellent agreement (Kappa value > 0.8) in the subjective scores of renal CTA images and showed no statistically significant difference between the 2 groups (4.57 ± 0.42 vs 4.41 ± 0.49) (P > .05).

Conclusions: BMI-based scan and reconstruction protocol in renal CTA significantly reduces radiation and contrast doses while maintaining diagnostic image quality.

Advances In Knowledge: (i) BMI-based individualized tube voltage selection and contrast injection protocol in renal CTA reduces both radiation and contrast doses over conventional protocol. (ii) The combination of lower kVp and higher weight ASIR-V maybe used to improve image quality in terms of contrast enhancement and image noise under lower radiation and contrast dose conditions. (iii) Renal CTA of normal size (BMI ≤ 30 kg/m2) patients acquired at low radiation dosage and low iodine contrast dose through the combination of low tube voltage and ASIR-V algorithm achieves excellent diagnostic image quality with a good inter-rater agreement.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjr/tqae185DOI Listing

Publication Analysis

Top Keywords

renal cta
20
radiation contrast
16
tube voltage
12
contrast injection
12
contrast dose
12
group group
12
contrast
10
group
9
individualized tube
8
adaptive statistical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!