Sesquiterpenoids in Agarwood: Biosynthesis, Microbial Induction, and Pharmacological Activities.

J Agric Food Chem

Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Rd. Xueyuan No. 4, Haikou, 571101, China.

Published: October 2024

AI Article Synopsis

Article Abstract

Agarwood, derived from the genus, is widely utilized in perfumery, traditional medicine, and cultural practices throughout Asia. Agarwood is rich in terpenes, especially sesquiterpenes, which are considered to be the source of its rare and exquisite fragrance. This Review consolidates recent research on sesquiterpene biosynthesis in agarwood and the influence of fungi on these processes, alongside a discussion of the potential medicinal value of agarwood sesquiterpenes. This Review commences by elucidating the general biosynthesis of sesquiterpenes and identifying the main enzymes and transcription factors involved in the production of agarwood sesquiterpenes. This Review also summarizes the fungi associated with agarwood and highlights how commensal fungi stimulate agarwood and sesquiterpene production. We then scrutinize the pharmacological properties of sesquiterpenes, underscoring their anti-inflammatory and antimicrobial effects, which are closely linked to cellular signaling pathways, such as the NF-κB and MAPK pathways. Additionally, we review the potential therapeutic benefits of agarwood essential oil for its antidepressant properties, which are linked to the regulation of stress-related neurochemical and hormonal pathways. This Review also addresses the challenges of sustainable agarwood production, highlighting issues such as overharvesting and habitat loss while discussing the potential strategy of harnessing microbes in agarwood production to support the ecological preservation of wild resources. By advancing our knowledge of agarwood and sesquiterpene characteristics, we propose potential directions for the future application and sustainable development of agarwood research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c06383DOI Listing

Publication Analysis

Top Keywords

agarwood
12
agarwood sesquiterpenes
8
sesquiterpenes review
8
agarwood sesquiterpene
8
agarwood production
8
sesquiterpenes
5
review
5
sesquiterpenoids agarwood
4
agarwood biosynthesis
4
biosynthesis microbial
4

Similar Publications

New and species (Pleosporales, Ascomycota) from spp. in China.

MycoKeys

January 2025

Research Center of Natural History and Culture, Center for Yunnan Plateau Biological Resources Protection and Utilization, Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China.

Saprobic fungi are known for their critical role in decomposition and nutrient cycling. The study of saprobic fungi is equally important, as it helps in understanding their ecological roles and identifying their hidden diversity. This study focused on saprobic fungi on , which is poorly studied compared to economically important hosts like coffee, tea, and rubber.

View Article and Find Full Text PDF

Agarwood essential oil is prized for its elegant aroma and pharmacological properties; however, the traditional hydrodistillation method suffers from inefficiencies, constraining the industrial potential of agarwood. We proposed an ultrasonic-assisted laccase synergistic pretreatment technique that enhanced extraction throughput by 70.90 % compared to the traditional method by facilitating pore formation in agarwood and expediting the release of essential oil.

View Article and Find Full Text PDF
Article Synopsis
  • Aquilaria agallocha is a valuable yet endangered plant known for producing agarwood, with parts containing medicinal and aromatic properties.
  • The study focused on the phytochemical analysis of A. agallocha roots, revealing significant levels of phenolic compounds, organic acids, and sugars, and strong antioxidant capacity.
  • The roots showed antibacterial activity against various gram-positive bacteria but were ineffective against gram-negative ones, highlighting their potential for medicinal use.
View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!