A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

"Enhancing post-craniotomy recovery: leveraging AI and network analysis for improved outcomes". | LitMetric

This letter addresses the importance of enhancing post-craniotomy care for primary brain tumor patients by leveraging insights from Rongqing Li et al.'s study on symptom networks. The study identified key central and bridge symptoms, such as sadness and difficulty understanding, which influence post-surgical recovery and quality of life. It also highlighted that patients with noninvasive tumors showed more cohesive symptom networks compared to those with invasive tumors. However, the study had limitations, including a short observation period and reliance on self-reported data, which restricted the depth of the findings.To optimize recovery, integrating artificial intelligence (AI) and machine learning (ML) could revolutionize post-craniotomy care. AI can assist with surgical planning, predict complications, and monitor recovery through wearable devices and real-time alerts. Natural Language Processing (NLP) can improve symptom detection from electronic health records, enhancing clinical decision-making. Despite the potential of these technologies, ethical concerns regarding data privacy and AI-generated report accuracy must be addressed. Future research should focus on long-term outcomes and refining AI applications to improve post-craniotomy symptom management and overall patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10143-024-03020-9DOI Listing

Publication Analysis

Top Keywords

post-craniotomy care
8
symptom networks
8
"enhancing post-craniotomy
4
recovery
4
post-craniotomy recovery
4
recovery leveraging
4
leveraging network
4
network analysis
4
analysis improved
4
improved outcomes"
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!