Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionvgj0mmvo9h05or6c2mm7nlh8g10scomj): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties.
Materials And Methods: The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method.
Results: CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity.
Conclusions: Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility.
Clinical Relevance: CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-024-05959-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!