Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitric oxide (NO) is a signaling molecule that not only appears in the very early stage of inflammatory disease but also persists in chronic conditions. Its detection in vivo can, therefore, potentially enable early disease detection and treatment monitoring. Due to its transient nature and low abundance, however, noninvasive and deep-tissue imaging of NO dynamics is challenging. In this study, we present a magnetic resonance imaging (MRI) contrast agent based on a manganese porphyrin for specific imaging of NO. This agent is activated by NO, binds to tissue protein, accumulates so long as NO is actively produced, and confers a substantial bright contrast on -weighted MRI. In vitro tests confirm the specificity of activation by NO over other reactive oxygen or nitrogen species, absence of inflammation induced by the contrast agent, and sensitivity to NO levels in the tens of micromolar. In vivo demonstration in a mouse model of stress-induced acute myocardial inflammation revealed an over 2.2-times increase in reduction in the inflamed heart compared to a healthy heart. This new NO-activatable contrast agent holds the potential to provide early diagnosis of inflammatory disease, characterize different stages of inflammation, and ultimately guide the design of novel anti-inflammation therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c01604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!