Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33963/v.phj.102581 | DOI Listing |
Sci Rep
January 2025
Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFEur Heart J Qual Care Clin Outcomes
January 2025
William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
Aims: In light of recent advances in imaging techniques, molecular understanding and therapeutic options in hypertrophic cardiomyopathy (HCM), we performed a systematic review of current guidelines for the diagnosis and management of HCM in order to identify consensus and discrepant areas in the clinical practice guidelines.
Methods And Results: We systematically reviewed the English language guidelines and recommendations for the management of HCM in adults. MEDLINE and EMBASE databases were searched for guidelines published in the last 10 years.
Cardiovasc Pathol
December 2024
Chazov National Medical Research Center of Cardiology, 121552, Academician Chazov str., 15a, Moscow, Russian Federation.
Aim: to assess the relation of focal and diffuse left ventricular (LV) fibrosis to left bundle branch block (LBBB).
Materials And Methods: 60 patients with dilated cardiomyopathy and LBBB (DCM-LBBB), 50 DCM-nonLBBB patients, 15 patients with LBBB and structurally normal heart (idiopathic LBBB) and 10 healthy volunteers (HV) underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE). LGE LV images were post-proceed for core scar (CS) and gray zone (GZ) calculation.
Radiographics
January 2025
From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).
Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!