While highly effective at killing Gram-positive bacteria, auranofin lacks significant activity against Gram-negative species for reasons that largely remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the low susceptibility of the Gram-negative model organism to auranofin when compared to the Gram-positive model organism . The proteome response of exposed to auranofin suggests a combination of inactivation of thiol-containing enzymes and the induction of systemic oxidative stress. Susceptibility tests in mutants lacking proteins upregulated upon auranofin treatment suggested that none of them are directly involved in 's high tolerance to auranofin. cells lacking the efflux pump component TolC were more sensitive to auranofin treatment, but not to an extent that would fully explain the observed difference in susceptibility of Gram-positive and Gram-negative organisms. We thus tested whether 's thioredoxin reductase (TrxB) is inherently less sensitive to auranofin than TrxB from , which was not the case. However, strains lacking the low-molecular-weight thiol glutathione, but not glutathione reductase, showed a high susceptibility to auranofin. Bacterial cells expressing the genetically encoded redox probe roGFP2 allowed us to observe the oxidation of cellular protein thiols . Based on our findings, we hypothesize that auranofin leads to a global disturbance in the cellular thiol redox homeostasis in bacteria, but Gram-negative bacteria are inherently more resistant due to the presence of drug export systems and high cellular concentrations of glutathione.IMPORTANCEAuranofin is an FDA-approved drug for the treatment of rheumatoid arthritis. However, it has also high antibacterial activity, in particular against Gram-positive organisms. In the current antibiotics crisis, this would make it an ideal candidate for drug repurposing. However, its much lower activity against Gram-negative organisms prevents its broad-spectrum application. Here we show that, on the level of the presumed target, there is no difference in susceptibility between Gram-negative and Gram-positive species: thioredoxin reductases from both and are equally inhibited by auranofin. In both species, auranofin treatment leads to oxidative protein modification on a systemic level, as monitored by proteomics and the genetically encoded redox probe roGFP2. The single largest contributor to 's relative resistance to auranofin seems to be the low-molecular-weight thiol glutathione, which is absent in and other Gram-positive species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537011PMC
http://dx.doi.org/10.1128/spectrum.00138-24DOI Listing

Publication Analysis

Top Keywords

auranofin
13
auranofin treatment
12
gram-positive gram-negative
8
gram-negative bacteria
8
activity gram-negative
8
susceptibility gram-negative
8
model organism
8
sensitive auranofin
8
difference susceptibility
8
gram-negative organisms
8

Similar Publications

Background: The anticancer activity and radiosensitizing effect of Auranofin, an an-tirheumatic and an approved gold metallic drug, have been investigated from multiple perspectives. In this study, the action of the new gold complex compound TPN-Au(I)-MM4 was compared with that of auranofin.

Methods: The inhibitory effect of 10 μM and 50 μM concentrations on cell proliferation was investigated using the human colon cancer cell lines HCT116 and SW480.

View Article and Find Full Text PDF

Auranofin induces disulfide bond-mimicking S-Au adducts in protein thiol pairs.

J Biol Chem

January 2025

Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany. Electronic address:

Auranofin is an inhibitor of human thioredoxin reductase, clinically used in the treatment of rheumatoid arthritis. More recently, it has been shown to possess strong antibacterial activity. Despite the structural dissimilarity and the independent evolutionary origins of human thioredoxin reductase and its bacterial counterpart (TrxB), inhibition of bacterial thioredoxin reductase is often suggested to be a major factor in auranofin's antibacterial mode of action.

View Article and Find Full Text PDF

DLBCL cells with ferroptosis morphology can be detected with a deep convolutional neural network.

Biomed Pharmacother

December 2024

Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland; Biomedicine and Internal Medicine Research Unit, University of Oulu, Oulu, Finland.

It has been demonstrated that diffuse large B-cell lymphoma (DLBCL) is especially sensitive to ferroptosis. Currently, confirming the presence of ferroptosis requires flow cytometry, which is a time consuming and labor-intensive task. Blistering of the cell membrane has been shown to be a ferroptosis-specific morphological change.

View Article and Find Full Text PDF

Assessment of anti-MRSA activity of auranofin and florfenicol combination: a PK/PD analysis.

J Appl Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.

Aims: Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen with multidrug-resistant phenotypes increasingly prevalent in both human and veterinary clinics. This study evaluated the potential of auranofin (AF) as an antibiotic adjuvant to enhance the anti-MRSA activity of florfenicol (FFC) and established a pharmacokinetic/pharmacodynamic (PK/PD) model to compare the efficacy of FFC alone or in combination with AF against MRSA.

Methods And Results: We observed an increased susceptibility and significant synergistic effects of MRSA to FFC in the presence of AF.

View Article and Find Full Text PDF

Metal (Au, Pt, Pd, Ni) Bis(dithiolene) complexes as dual-action agents combating cancer and trypanosomatid infections.

J Inorg Biochem

November 2024

Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.

Cancer and infection diseases pose severe threats to public health worldwide stressing the need for more effective and efficient treatments. Thus, the search for broad-spectrum activity drugs seems justifiable and urgent. Herein, we investigate the anticancer and antitrypanosomatid (anti-Trypanosoma cruzi) activities of eight monoanionic metal bis(dithiolene) complexes, [PhP][M(R-thiazdt)] with M = Au, Pt, Pd, Ni, containing N-alkyl-1,3-thiazoline-2-thione dithiolene ligands (R-thiazdt) with different alkyl groups (R = Et, tBu).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!