AI Article Synopsis

  • A novel Gram-positive thermophilic bacterium, B-768, shows promise as a probiotic and microbial cell factory, but its robustness is not well understood, especially for wild strains.
  • Genome sequencing revealed B-768 has the largest known bacterial genome at 3.94 Mbp, featuring enhanced carbohydrate metabolism and capable of utilizing various sugars from biomass hydrolysates.
  • Functional genomics indicated that B-768 exhibits different growth phenotypes on xylose and glucose, with a tendency for lactate overproduction on glucose, highlighting its efficient sugar utilization and tolerance to inhibitory conditions.

Article Abstract

a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of ' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B-768. Genome sequencing revealed that B-768 has the largest genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production overflow metabolism. Overall, B-768 is a novel, robust, and promising strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575207PMC
http://dx.doi.org/10.1128/msystems.00952-24DOI Listing

Publication Analysis

Top Keywords

biomass hydrolysates
20
proteome reallocation
12
novel robust
12
functional genomics
12
strain b-768
12
overflow metabolism
12
metabolism
9
robust strain
8
capable utilizing
8
systems analysis
8

Similar Publications

Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols.

J Agric Food Chem

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.

View Article and Find Full Text PDF

Seaweed residue hydrolysate enhances the intestinal health, immunity and disease resistance in northern snakehead (Channa argus).

Fish Shellfish Immunol

January 2025

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks.

View Article and Find Full Text PDF

This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.

View Article and Find Full Text PDF

Valorization of pineapple (ANANAS comosus) peel waste for levan production: Assessment of biological activities.

Int J Biol Macromol

January 2025

Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India. Electronic address:

Levan canopies a pivotal role in all the emerging sectors owing to its non-toxic and biodegradable nature. However, their expensive production impeded their commercialization and made them uneconomical. Hence the current work is focused on harnessing the pineapple peel as a viable substrate for bacterial fermentation to promote levan production.

View Article and Find Full Text PDF

Harnessing of Sunflower Stalks by Hydrolysis and Fermentation with to Produce Biofuels.

Polymers (Basel)

December 2024

Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain.

A sequential valorization process of sunflower stalks was carried out using nitric acid (0.1-2 mol dm) as a hydrolytic agent and fermenting the hydrolysate of higher sugar concentration in the presence of the non-conventional yeast . Values reached for ethanol yield (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!