AI Article Synopsis

  • Novel treatments have improved survival rates for hepatocellular carcinoma (HCC) patients, but resistance to these therapies is a key challenge, highlighting the need for research into drug resistance mechanisms.
  • The study focuses on the tyrosine kinase inhibitor (TKI)-resistant gene ZNF687, examining its role and clinical significance in HCC through various bioinformatics and molecular analysis techniques.
  • Results indicate that ZNF687 is overexpressed in HCC and linked to poorer patient outcomes, with histone modification and related pathways identified as significant, alongside the compound chaetocin showing potential against ZNF687.

Article Abstract

Background: Novel treatments such as monotherapy and combined immunotherapy significantly extend overall survival (OS) for hepatocellular carcinoma (HCC) patients, but HCC is susceptible to treatment resistance during long-term therapy. The resistance mechanism to targeted drugs in HCC remains ambiguous, making research on HCC drug resistance targets crucial for the development of precision medicine.

Objectives: To investigate the transcriptional features, biological functions and potential clinical value of the tyrosine kinase inhibitor (TKI)-resistant gene ZNF687 in HCC.

Material And Methods: The TKI-resistant genes of HCC were identified using clustered regularly interspaced short palindromic repeats (CRISPR) in vitro screening. Then, the dependence of HCC cell lines on ZNF687 was investigated in silico. We collected global mRNA datasets of HCC tissue, integrated the mRNA expression characteristics of ZNF687 in HCC and explored the impact of ZNF687 on HCC patient prognoses using the Kaplan-Meier method (in silico). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were then conducted, and a connectivity map and molecular docking technology were applied to find the underlying agent opposing ZNF687.

Results: In vitro, the guide RNA corresponding to ZNF687 was weakly detected in HCC cells, and ZNF687 deficiency was found to inhibit growth in HCC cell lines. ZNF687 mRNA was overexpressed and had a high discriminatory ability for HCC in 2,975 HCC samples, contrasting with 2,340 non-HCC samples. Moreover, an excessive ZNF687 transcript level was related to a worse overall survival (OS) prognosis. Histone modification, spliceosome, transcription coregulator activity, and nucleocytoplasmic transport were the most significant pathways for ZNF687 differential-related gene enrichment. Chaetocin was found to be a candidate compound and presented a strong affinity to ZNF687.

Conclusions: ZNF687 represents a TKI-resistant and growth-dependent gene for HCC, the overexpression of which indicates poor OS for HCC patients. Additionally, ZNF687 is expected to be a druggable target for overcoming TKI resistance, and chaetocin may be a candidate therapeutic compound for ZNF687.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/188425DOI Listing

Publication Analysis

Top Keywords

hcc
15
znf687
13
tki-resistant gene
8
gene znf687
8
hepatocellular carcinoma
8
hcc patients
8
hcc cell
8
cell lines
8
lines znf687
8
znf687 hcc
8

Similar Publications

Lipid Levels and Lung Cancer Risk: Findings from the Taiwan National Data Systems from 2012 to 2018.

J Epidemiol Glob Health

January 2025

Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.

Background: Lipids are known to be involved in carcinogenesis, but the associations between lipid profiles and different lung cancer histological classifications remain unknown.

Methods: Individuals who participated in national adult health surveillance from 2012 to 2018 were included. For patients who developed lung cancer during follow-up, a 1:2 control group of nonlung cancer participants was selected after matching.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) combined with anti-vascular endothelial growth factor (VEGF) have been the standard first-line treatment of hepatocellular carcinoma (HCC). However, the efficacy of this combination in post-line treatment is still unknown. This study aimed to evaluate the efficacy and safety of the combination of anti-PD-L1 envafolimab and novel humanized anti-VEGF suvemcitug as second-line treatment for patients with HCC.

View Article and Find Full Text PDF

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

Background: Nanotechnology has increasingly been applied in the diagnosis and treatment of hepatocellular carcinoma (HCC) over the past two decades. This study aims to explore the utilization of nanotechnology in HCC through a bibliometric analysis, identifying key themes, trends, and contributions in this field.

Methods: The study utilized VOSviewer and CiteSpace software to perform a bibliometric analysis, evaluating scholarly contributions related to nanotechnology in HCC.

View Article and Find Full Text PDF

Purpose: To compare the clinical outcomes of different systemic therapies, specifically PD(L)1 inhibitors plus Lenvatinib versus Atezolizumab plus Bevacizumab, when combined with hepatic arterial infusion chemotherapy (HAIC) based on the FOLFOX regimen (oxaliplatin, fluorouracil, and leucovorin) as first line treatment for unresectable hepatocellular carcinoma.

Patients And Methods: This real-world retrospective study enrolled 294 patients with unresectable HCC. All patients received HAIC in combination with either PD(L)1 inhibitors plus Lenvatinib (PLEN-HAIC) or Atezolizumab plus Bevacizumab (AT-HAIC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!