Distributed acoustic sensing (DAS), converting fiber-optic cables into dense acoustic sensors, is a promising technology that offers a cost-effective and scalable solution for long-term, high-resolution studies in ocean acoustics. In this paper, the telecommunication cable of Martha's Vineyard Coastal Observatory (MVCO) is used to explore the feasibility of cable localization and shallow-water sound propagation with a mobile acoustic source. The MVCO DAS array records coherent, high-quality acoustic signals in the frequency band of 105-160 Hz, and a two-step inversion method is used to improve the location accuracy of DAS channels, reducing the location uncertainty to ∼2 m. The DAS array with refined channel positions enables the high-resolution observation of acoustic modal interference. Numerical simulations that reproduce the observed interference pattern suggest a compressional speed of 1750 m/s in the sediment, which is consistent with previous in situ geoacoustic measurements. These findings demonstrate the long-term potential of DAS for high-resolution ocean acoustic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0030400 | DOI Listing |
Membranes (Basel)
December 2024
Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina.
The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus.
View Article and Find Full Text PDFJ Pers Med
December 2024
Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy.
Our aim was to evaluate the possible long-term cerebral deposition of amyloid-β in patients with PD treated with subthalamic nucleus deep brain stimulation (STN-DBS) and its possible influence on axial and cognitive variables. Consecutive PD patients treated with bilateral STN-DBS with a long-term follow-up were included. The amyloid-β deposition was evaluated postoperatively through an 18F-flutemetamol positron emission tomography (PET) study.
View Article and Find Full Text PDFDiseases
November 2024
Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35037 Marburg, Germany.
Purpose: To evaluate the ability of acoustic radiation force impulse (ARFI) elastography in differentiating benign from malignant etiologies of splenomegaly based on differences in splenic stiffness.
Materials And Methods: Between September 2020 and November 2022, we evaluated 40 patients with splenomegaly-defined by a splenic long axis greater than 13 cm and/or a short axis greater than 6 cm, without visible focal or infiltrative mass lesions-using abdominal ultrasound at our university hospital. Each patient also underwent a standardized ARFI elastographic assessment of the enlarged spleen, with data collected prospectively.
R Soc Open Sci
September 2024
Centre for Neuroscience in Education, University of Cambridge, Cambridge, UK.
French and German poetry are classically considered to utilize fundamentally different linguistic structures to create rhythmic regularity. Their metrical rhythm structures are considered poetically to be very different. However, the biophysical and neurophysiological constraints upon the speakers of these poems are highly similar.
View Article and Find Full Text PDFInterspeech
September 2024
Pattern Recognition Lab. Friedrich-Alexander University, Erlangen, Germany.
Magnetic Resonance Imaging (MRI) allows analyzing speech production by capturing high-resolution images of the dynamic processes in the vocal tract. In clinical applications, combining MRI with synchronized speech recordings leads to improved patient outcomes, especially if a phonological-based approach is used for assessment. However, when audio signals are unavailable, the recognition accuracy of sounds is decreased when using only MRI data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!