A three-arm comparative clinical endpoint bioequivalence (BE) study is often used to establish bioequivalence (BE) between a locally acting generic drug (T) and reference drug (R), where superiority needs to be established for T and R over Placebo (P) and equivalence needs to be established for T vs. R. Sometimes, when study design parameters are uncertain, a fixed design study may be under- or over-powered and result in study failure or unnecessary cost. In this paper, we propose a two-stage adaptive clinical endpoint BE study with unblinded sample size re-estimation, standard or maximum combination method, optimized allocation ratio, optional re-estimation of the effect size based on likelihood estimation, and optional re-estimation of the R and P treatment means at interim analysis, which have not been done previously. Our proposed method guarantees control of Type 1 error rate analytically. It helps to reduce the average sample size when the original fixed design is overpowered and increases the sample size and power when the original study and group sequential design are under-powered. Our proposed adaptive design can help generic drug sponsors cut cost and improve success rate, making clinical study endpoint BE studies more affordable and more generic drugs accessible to the public.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pst.2439DOI Listing

Publication Analysis

Top Keywords

sample size
16
clinical endpoint
12
three-arm comparative
8
comparative clinical
8
endpoint bioequivalence
8
study
8
bioequivalence study
8
study design
8
unblinded sample
8
size re-estimation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!