AI Article Synopsis

  • The study investigates the health risks associated with lithium (Li) and other metals in bottled and spring water due to the growing demand for lithium linked to renewable energy.
  • Using a national database of water samples, researchers found concerning levels of various metals, with lithium concentrations that often exceeded safety limits, particularly in bottled water.
  • Results suggest significant correlations between lithium and other minerals, indicating potential health risks that necessitate further research and possible regulations on water quality.

Article Abstract

Background: Increasing lithium (Li) demand worldwide due to its properties and role in renewable energy will raise water reservoir pollution and side effects on human health. Divergent results regarding Li concentration in water and affective disorders are found in the literature, which is why regional reports are expected.

Objective: The present study evaluated the occurrence and human health risks resulting from oral exposure, respectively, and the relationship between alkali metals (Li, Na, and K) and minerals (Mg, Ca) in balanced purified water (bottled) and spring water.

Methods: The ICP-MS technique was used to measure a national database with 53 bottled and 42 spring water samples randomly selected. One-way ANOVA, Pearson correlation, and HCA analysis were applied to assess the possible relationship between metals in water. The possible side effects of Li poisoning of water resources on human health have been evaluated using the Estimated Daily Intake Index (EDI) and Total Hazard Quotient (THQ).

Results: The toxic metals (As, Hg, and Pb) were measured, and the results indicate values above the detection limit of 22.3% of samples in the case of lead but not exceeding the safety limits. Depending on the water sources, such as bottled and spring water, the Li concentration varied between 0.06-1,557 and 0.09-984% μg/L. We found a strong positive correlation between Li and Na and Mg, varying between bottled and spring waters (% <%0.001). Li exceeded the limit set by the Health-Based Screening Level (HBSL) in 41.37 and 19% of bottled and spring water samples. The oral reference doses (p-RDs) for the noncancer assessment of daily oral exposure effects for a human lifetime exceeded threshold values. The THQ index shows potential adverse health effects, requiring further investigations and remedial actions in 27.58% of approved bottled waters and 2.38% of spring waters.

Conclusion: We can conclude that water is safe based on the Li concentration found in drinking water and supported by a gap in strict regulations regarding human Li ingestion. The present study can serve decision-makers and represent a starting database with metals of interest for further clinical studies. Decision-makers can also use it to find solutions for sustainable management of clean and safe drinking water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456539PMC
http://dx.doi.org/10.3389/fpubh.2024.1456640DOI Listing

Publication Analysis

Top Keywords

human health
16
bottled spring
16
water
9
health risks
8
side effects
8
spring water
8
evaluation potential
4
human
4
potential human
4
health
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!