This paper comprehensively analyzes India's potential to become a leader in cancer care in the Global South, particularly in precision population cancer medicine (PPCM). Through an interdisciplinary lens, it examines the current landscape of cancer care in India, highlighting its strengths, weaknesses, opportunities, and threats in this domain. This review explores the concept of knowledge translation and its importance in bridging the gap between knowledge generation and implementation in medical sciences and applies this to the Indian healthcare scenario. The review then delves into India's technological prowess, exemplified by its digital health initiatives such as the CoWIN (winning over COVID-19) app and the Ayushman Bharat Digital Mission, which provide a strong foundation for leveraging advanced technologies in healthcare. The authors discuss India's pharmaceutical industry, often referred to as the "pharmacy of the world," emphasizing its crucial role in global drug manufacturing and distribution. It also examines the country's emerging genomic research landscape, including initiatives such as GenomeIndia and the Indian Cancer Genome Atlas Foundation, which are pivotal for advancing personalized medicine. A significant portion of the review is dedicated to analyzing India's clinical trial ecosystem. It traces the evolution of regulatory frameworks governing clinical research in the country and highlights recent reforms that have made India an increasingly attractive destination for global studies, the potential adoption of innovative trial designs and artificial intelligence (AI)-driven analyses. Crucially, the authors confront the formidable obstacles inherent in India's complex healthcare landscape, illuminating the unique challenges that must be overcome. The review acknowledges India's underrepresentation in global clinical trials despite its large population and significant cancer burden. The issue of financial toxicity in cancer care is discussed, underscoring the need for affordable treatment options. The study also points out the nascent state of India's genomic databases, which account for only a small percentage of global genetic data. Despite these challenges, the authors posit that by effectively leveraging its information technology (IT) infrastructure, robust pharmaceutical sector, and large, diverse population, India has the potential to develop unique, country-specific solutions for cancer care. The study suggests that by fostering genomic research, strategically reforming its clinical trial ecosystem, and harnessing its digital capabilities, India could transform its cancer care landscape and emerge as a model for other developing nations in the Global South. In essence, this paper provides a roadmap for India's journey towards becoming a leader in PPCM, offering valuable insights for policymakers, healthcare professionals, and researchers in the field of oncology and precision medicine. Indeed, by using PPCM as a "pilot project," India can learn to use its new strategies to improve non-cancer care disease prevention, early detection, and improved and more cost-effective management. This approach could revolutionize cancer care in India and serve as a model for other developing nations in the Global South. By leveraging the strategies and technologies developed for PPCM, India could significantly enhance its healthcare system, highlighting the importance and urgency of improving cancer care in the region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457899 | PMC |
http://dx.doi.org/10.7759/cureus.70892 | DOI Listing |
Pract Radiat Oncol
January 2025
Department of Radiation Oncology, Christiana Care, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware.
Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography.
View Article and Find Full Text PDFAnn Oncol
January 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: The availability and affordability of safe, effective cancer therapies are core requirements for effective cancer control. Global disparities exist in access, however, yielding unequal cancer outcomes. The goal of this study was to provide updated data regarding the formulary availability, out-of-pocket costs, and accessibility of cancer medicines in countries across the full spectrum of economic development areas.
View Article and Find Full Text PDFClin Lung Cancer
December 2024
Department of Thoracic Surgery, Liverpool Heart and Lung Hospital, Liverpool, UK.
Background: To evaluate the real-world surgical and pathological outcomes following neoadjuvant nivolumab in combination with chemotherapy in a multicentre national cohort of patients.
Methods: Retrospective analysis on consecutive patients treated in three tertiary referral hospitals in UK with neoadjuvant chemotherapy and immunotherapy (nivolumab) for stage II-IIIB nonsmall cell lung cancer (March 2023-May 2024). Surgical and pathological outcomes were assessed.
Eur J Cancer
January 2025
Department of Respiratory Medicine, Saku Central Hospital Advanced Care Center, 3400-28 Nakagomi, Saku-city, Nagano 385-0051, Japan.
Surgery
January 2025
Department of Oncology, The First Hospital of Hohhot, Hohhot, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!